摘要:
针对目前棚室内机器人作业分析算法智能性不足、准确作业率较低,且一次巡航过程只能进行单一作业,存在使用效率不高的问题,提出了一种搭载在三臂棚室机器人上,基于体感操控作业的决策规划算法,用Kinect采集含操作人员位姿信息的深度图像,结合随机森林统计学习理论和基于高斯核函数的Mean shift算法,确定了代表人体位姿的20个关键骨骼点坐标,在此基础上提出了一种基于模式切换的三臂映射关系,将骨骼点信息映射到机器人工作空间,使人的两只手臂能自如的控制三臂机器人,在一次巡航中完成多种棚室作业;此外,还提出了一种结合骨骼追踪技术和YCbCr颜色空间的手势特征分割方法,实现了用手势控制机器人末端执行器作业.最后,搭建了用于测试体感决策算法的三臂机器人样机,进行了针对该决策算法的精确性试验,根据试验误差数据对肩部关节夹角采用离散化取值识别,解决了肩部关节识别误差,结果表明:测试者被捕捉到的关节处夹角和机器人对应关节夹角的最大映射误差为1.90°,上位机发送夹角值与机器人实际转动的夹角值最大误差为0.80°,在误差允许范围内,同时在该精度下完成一套采摘加喷施作业指令,平均耗时13.34 s,且操作者还可通过体感操控训练进一步提高机器人作业性能,表明该算法具有准确性和实用性.