基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
Modern computational models have leveraged biological advances in human brain research. This study addresses the problem of multimodal learning with the help of brain-inspired models. Specifically, a unified multimodal learning architecture is proposed based on deep neural networks, which are inspired by the biology of the visual cortex of the human brain. This unified framework is validated by two practical multimodal learning tasks: image captioning, involving visual and natural language signals, and visual-haptic fusion, involving haptic and visual signals. Extensive experiments are conducted under the framework, and competitive results are achieved.
推荐文章
基于recurrent neural networks的网约车供需预测方法
长短时记忆循环神经网络
网约车数据
交通优化调度
TensorFlow
深度学习
Spatial prediction of landslide susceptibility using GIS-based statistical and machine learning mode
Landslide susceptibility mapping
Statistical model
Machine learning model
Four cases
基于情感计算的E-Learning模型框架
情感计算
E-Learning
和谐人机环境
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 Brain-inspired multimodal learning based on neural networks
来源期刊 临床转化神经医学(英文版) 学科 医学
关键词
年,卷(期) 2018,(1) 所属期刊栏目
研究方向 页码范围 61-72
页数 12页 分类号 R338
字数 语种
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2018(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
引文网络交叉学科
相关学者/机构
期刊影响力
神经科学(英文)
季刊
2096-5958
10-1534/R
Xueyuan Building Tsi
出版文献量(篇)
176
总下载数(次)
0
总被引数(次)
0
论文1v1指导