基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
研究目的:目前隧道煤与瓦斯突出预测主要采用煤炭的常规接触式预测方法,如综合指标法、钻屑指标法等,但隧道与煤巷在断面大小、施工支护等方面有诸多不同,照搬煤炭预测方法并不一定能取得预期效果.本文根据煤与瓦斯突出综合作用假说,借鉴BP神经网络原理,对隧道瓦斯突出的多指标神经网络综合预测进行探讨,确定突出的评价指标,构建神经网络预测模型,通过神经网络模型的训练和回判,综合评价预测煤与瓦斯突出危险性.研究结论:(1)在综合分析突出影响因素基础上,基于瓦斯突出综合作用假说机理,提出了BP神经网络预测隧道煤与瓦斯突出危险性的方法;(2)选取瓦斯压力、地质构造、隧道埋深、煤的坚固系数、煤体结构类型及瓦斯放散初速度作为突出评价指标;(3)采集矿井突出样本进行神经网络模型的训练及回判,通过对已建成瓦斯隧道进行判别,判别结果与实际相符,验证了矿井突出样本应用到瓦斯隧道的突出预测可行性;(4)通过BP神经网络对成贵高铁7座高瓦斯隧道进行预测判别,表明玉京山隧道C5、C6煤层具有突出危险性,其他6座隧道无突出危险性;(5)本研究成果可为瓦斯隧道设计与施工提供借鉴.
推荐文章
基于BP和RBF神经网络的煤与瓦斯突出预测研究
BP神经网络
径向基神经网络
预测
煤与瓦斯突出
基于灰色关联熵的煤与瓦斯突出概率神经网络预测模型
煤与瓦斯突出
危险性预测
熵权法
灰色关联度分析
概率神经网络
煤与瓦斯突出的PCA-BP神经网络预测模型研究
主成分分析
神经网络
煤与瓦斯突出
预测
基于再生核RBF神经网络的瓦斯突出预测系统
再生核RBF神经网络
瓦斯突出
PCI总线
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 BP神经网络法预测隧道瓦斯突出的模型与实例
来源期刊 铁道工程学报 学科 交通运输
关键词 瓦斯隧道 突出预测方法 神经网络
年,卷(期) 2018,(2) 所属期刊栏目 隧道工程
研究方向 页码范围 56-61
页数 6页 分类号 U25
字数 3432字 语种 中文
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 赵万强 14 51 5.0 6.0
2 喻渝 31 417 11.0 20.0
3 匡亮 西南交通大学交通隧道工程教育部重点实验室 5 16 3.0 4.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (9)
共引文献  (69)
参考文献  (2)
节点文献
引证文献  (6)
同被引文献  (27)
二级引证文献  (0)
1981(1)
  • 参考文献(0)
  • 二级参考文献(1)
1999(1)
  • 参考文献(0)
  • 二级参考文献(1)
2001(1)
  • 参考文献(0)
  • 二级参考文献(1)
2002(2)
  • 参考文献(0)
  • 二级参考文献(2)
2003(1)
  • 参考文献(0)
  • 二级参考文献(1)
2004(1)
  • 参考文献(0)
  • 二级参考文献(1)
2007(1)
  • 参考文献(1)
  • 二级参考文献(0)
2008(1)
  • 参考文献(0)
  • 二级参考文献(1)
2010(1)
  • 参考文献(0)
  • 二级参考文献(1)
2012(1)
  • 参考文献(1)
  • 二级参考文献(0)
2018(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2019(4)
  • 引证文献(4)
  • 二级引证文献(0)
2020(2)
  • 引证文献(2)
  • 二级引证文献(0)
研究主题发展历程
节点文献
瓦斯隧道
突出预测方法
神经网络
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
铁道工程学报
月刊
1006-2106
11-3567/U
16开
北京市复兴路69号中国中铁广场
1984
chi
出版文献量(篇)
5282
总下载数(次)
8
总被引数(次)
43612
论文1v1指导