基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
针对传统稀疏表示跟踪算法在复杂背景中易出现跟踪漂移问题,该文提出一种局部感知下的稀疏优化目标跟踪方法.首先,将首帧确定的目标区域进行非重叠均匀分割,并利用目标的全局特征和局部特征联合建模.然后,提出一种局部感知校验方法约束稀疏优化匹配过程,从而确定最优匹配样本.最后,在模板更新中提出一种决策方法对遮挡进行检测,并针对不同遮挡情况采取相应的更新策略,使得更新后的模板集更加完善.实验在10个标准库视频序列中测试,并与目前较流行的目标跟踪算法在跟踪效果、成功率等方面进行比较,实验结果表明,提出的跟踪方法在局部遮挡、目标形变、复杂背景等条件下跟踪准确、适应性强.
推荐文章
基于压缩感知的空间稀疏目标成像方法研究
压缩感知
稀疏目标
目标检测
DMD
基于深度特征的稀疏表示目标跟踪算法
目标跟踪
稀疏表示
卷积神经网络
生成模型
深度学习
基于局部稀疏表示的目标跟踪
视频监控
目标跟踪
局部表观模型
稀疏表示
局部特征块
粒子滤波
样本分块稀疏表示判决式目标跟踪
粒子滤波
样本分块
稀疏表示
分类器
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 局部感知下的稀疏优化目标跟踪方法
来源期刊 电子与信息学报 学科 工学
关键词 目标跟踪 局部感知 稀疏优化 遮挡决策
年,卷(期) 2018,(2) 所属期刊栏目 论文
研究方向 页码范围 272-281
页数 10页 分类号 TP391.41
字数 7035字 语种 中文
DOI 10.11999/JEIT170473
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 刘万军 辽宁工程技术大学软件学院 181 1681 19.0 33.0
2 刘大千 辽宁工程技术大学电子与信息工程学院 15 59 5.0 7.0
3 费博雯 辽宁工程技术大学工商管理学院 15 65 5.0 7.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (50)
共引文献  (21)
参考文献  (8)
节点文献
引证文献  (6)
同被引文献  (44)
二级引证文献  (15)
1996(1)
  • 参考文献(0)
  • 二级参考文献(1)
2000(1)
  • 参考文献(0)
  • 二级参考文献(1)
2003(3)
  • 参考文献(0)
  • 二级参考文献(3)
2004(1)
  • 参考文献(0)
  • 二级参考文献(1)
2005(3)
  • 参考文献(0)
  • 二级参考文献(3)
2006(3)
  • 参考文献(0)
  • 二级参考文献(3)
2007(2)
  • 参考文献(0)
  • 二级参考文献(2)
2008(3)
  • 参考文献(0)
  • 二级参考文献(3)
2010(1)
  • 参考文献(0)
  • 二级参考文献(1)
2011(4)
  • 参考文献(0)
  • 二级参考文献(4)
2012(8)
  • 参考文献(1)
  • 二级参考文献(7)
2013(7)
  • 参考文献(1)
  • 二级参考文献(6)
2014(7)
  • 参考文献(0)
  • 二级参考文献(7)
2015(9)
  • 参考文献(3)
  • 二级参考文献(6)
2016(4)
  • 参考文献(2)
  • 二级参考文献(2)
2017(1)
  • 参考文献(1)
  • 二级参考文献(0)
2018(2)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(2)
  • 二级引证文献(0)
2018(2)
  • 引证文献(2)
  • 二级引证文献(0)
2019(10)
  • 引证文献(3)
  • 二级引证文献(7)
2020(9)
  • 引证文献(1)
  • 二级引证文献(8)
研究主题发展历程
节点文献
目标跟踪
局部感知
稀疏优化
遮挡决策
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
电子与信息学报
月刊
1009-5896
11-4494/TN
大16开
北京市北四环西路19号
2-179
1979
chi
出版文献量(篇)
9870
总下载数(次)
11
总被引数(次)
95911
相关基金
国家自然科学基金
英文译名:the National Natural Science Foundation of China
官方网址:http://www.nsfc.gov.cn/
项目类型:青年科学基金项目(面上项目)
学科类型:数理科学
论文1v1指导