基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
This paper presents a study on the improvement of MLNNs(multi-layer neural networks)performance by an activity function for multi logic training patterns.Our model network has L hidden layers of two inputs and three,four to six output training using BP(backpropagation)neural network.We used logic functions of XOR(exclusive OR),OR,AND,NAND(not AND),NXOR(not exclusive OR)and NOR(not OR)as the multi logic teacher signals to evaluate the training performance of MLNNs by an activity function for information and data enlargement in signal processing(synaptic divergence state).We specifically used four activity functions from which we modified one and called it L&exp.function as it could give the highest training abilities compared to the original activity functions of Sigmoid,ReLU and Step during simulation and training in the network.And finally,we propose L&exp.function as being good for MLNNs and it may be applicable for signal processing of data and information enlargement because of its performance training characteristics with multiple training logic patterns hence can be adopted in machine deep learning.
推荐文章
基于recurrent neural networks的网约车供需预测方法
长短时记忆循环神经网络
网约车数据
交通优化调度
TensorFlow
深度学习
The performance of the Noblesse multi-collector noble gas mass spectrometer for 40Ar/39Ar geochronol
Ar/Ar geochronology
Multi-collector
High precision
Noblesse
Age standard
Spatial prediction of landslide susceptibility using GIS-based statistical and machine learning mode
Landslide susceptibility mapping
Statistical model
Machine learning model
Four cases
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 Learning Performance of Linear and Exponential Activity Function with Multi-layered Neural Networks
来源期刊 电气工程:英文版 学科 工学
关键词 MULTI-LAYER NEURAL networks LEARNING performance multi logic training patterns ACTIVITY FUNCTION BP NEURAL network deep LEARNING
年,卷(期) 2018,(5) 所属期刊栏目
研究方向 页码范围 289-294
页数 6页 分类号 TM
字数 语种
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2018(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
MULTI-LAYER
NEURAL
networks
LEARNING
performance
multi
logic
training
patterns
ACTIVITY
FUNCTION
BP
NEURAL
network
deep
LEARNING
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
电气工程:英文版
双月刊
2328-2223
武汉市洪山区卓刀泉北路金桥花园C座4楼
出版文献量(篇)
155
总下载数(次)
0
总被引数(次)
0
论文1v1指导