作者:
基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
针对传统的自底向上的显著性检测模型突出背景、前景区域不均匀以及显著目标位于图像边缘致使检测效果差等问题,提出了一种基于多层图和紧凑性的显著性检测模型.首先,将图像过分割为超像素,在超像素基础上结合图像块层和聚类层构建多层图模型,能够有效检测不同尺度的图像并获得均匀的显著区域.然后,基于紧凑性假设建立紧凑性模型,并采用元胞自动机优化.根据超像素的紧凑性筛选出可靠的前景种子点和背景种子点,基于多层图模型利用流行排序算法分别计算基于前景种子点和背景种子点的排序分数,从目标和背景的角度结合两种排序分数得到显著图.最后,对显著图进行滤波获得光滑的前景和背景区域,得到最终显著图.在常用的数据集MSRA-1000和ECSSD上与9种流行算法进行比较,实验结果表明该算法具有较高的准确率和召回率.
推荐文章
基于颜色和纹理特征的显著性检测算法
模式识别
显著性检测
颜色对比度
纹理特征
二维信息熵
基于双层多尺度神经网络的显著性对象检测算法
显著性对象检测
深度学习
深度卷积网络
条件随机场
基于颜色和运动空间分布的时空显著性区域检测算法
时空一致性优化
颜色的空间分布
运动的空间分布
时空显著性
基于结构感知深度神经网络的显著性对象检测算法
显著性对象检测
深度学习
显著图
卷积神经网络
对象骨架检测
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于多层图和紧凑性的显著性检测算法
来源期刊 华东理工大学学报(自然科学版) 学科 工学
关键词 显著性检测 多层图 紧凑性 种子扩散
年,卷(期) 2018,(5) 所属期刊栏目 信息科学与工程
研究方向 页码范围 737-743
页数 7页 分类号 TP391.1
字数 3946字 语种 中文
DOI 10.14135/j.cnki.1006-3080.20170918001
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 常青 华东理工大学信息科学与工程学院 18 89 5.0 9.0
2 邵臣 华东理工大学信息科学与工程学院 2 0 0.0 0.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (10)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2002(1)
  • 参考文献(1)
  • 二级参考文献(0)
2007(1)
  • 参考文献(1)
  • 二级参考文献(0)
2009(1)
  • 参考文献(1)
  • 二级参考文献(0)
2012(3)
  • 参考文献(3)
  • 二级参考文献(0)
2013(2)
  • 参考文献(2)
  • 二级参考文献(0)
2014(1)
  • 参考文献(1)
  • 二级参考文献(0)
2017(1)
  • 参考文献(1)
  • 二级参考文献(0)
2018(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
显著性检测
多层图
紧凑性
种子扩散
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
华东理工大学学报(自然科学版)
双月刊
1006-3080
31-1691/TQ
16开
上海市梅陇路130号
4-382
1957
chi
出版文献量(篇)
3399
总下载数(次)
2
总被引数(次)
27146
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导