基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
六足机器人采用不同的步态参数针对不同的非结构环境可提高运行效率、增强平稳性.为实现该目标,预先完成三个步骤:第一,机载摄像头用来捕获环境信息;第二,基于环境样本库,使用卷积神经网络训练环境识别模型,因其在视觉问题上的泛化能力,卷积神经网络可以自动提取图像特征并降低建模工作量;第三,调整六足机器人的步态参数以获得某一给定环境下的最优步态.在此基础上,六足机器人根据环境识别结果选择相应的最佳步态,并实现环境自适应.最后进行对比实验,结果表明,应用环境自适应方法的六足机器人可以在复杂环境中耗能更低,并获得更高的速度和更优良的平稳性.
推荐文章
双关节刚性机器人自适应BP神经网络算法
刚性机器人
反向传播神经网络
自适应
激活函数
模糊推理
基于模糊CMAC神经网络的并联机器人自适应力控制研究
CMAC
神经网络
并联机器人
自适应力控制
基于模糊神经网络的六足机器人自主导航闭环控制系统设计
六足机器人
自主导航
模糊神经网络
闭环控制
环境感知
基于模糊神经网络的冗余度变几何桁架机器人自适应控制
自适应控制
冗余度变几何桁架机器人
模糊神经网络
逆动力学
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于卷积神经网络的六足机器人环境自适应方法研究
来源期刊 现代机械 学科 工学
关键词 六足机器人 卷积神经网络 环境自适应 步态
年,卷(期) 2018,(2) 所属期刊栏目 现代制造、工艺装备
研究方向 页码范围 1-6
页数 6页 分类号 TH16|TP391.4
字数 4274字 语种 中文
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 留沧海 西南科技大学制造科学与工程学院 13 22 2.0 4.0
2 傅汇乔 西南科技大学制造科学与工程学院 1 2 1.0 1.0
3 唐开强 南京大学工程管理学院控制与系统工程系 1 2 1.0 1.0
4 江浩 西南科技大学制造科学与工程学院 1 2 1.0 1.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (22)
共引文献  (5)
参考文献  (14)
节点文献
引证文献  (2)
同被引文献  (0)
二级引证文献  (0)
1986(1)
  • 参考文献(0)
  • 二级参考文献(1)
1990(1)
  • 参考文献(0)
  • 二级参考文献(1)
1999(1)
  • 参考文献(0)
  • 二级参考文献(1)
2002(2)
  • 参考文献(0)
  • 二级参考文献(2)
2003(1)
  • 参考文献(0)
  • 二级参考文献(1)
2004(3)
  • 参考文献(0)
  • 二级参考文献(3)
2006(2)
  • 参考文献(0)
  • 二级参考文献(2)
2007(1)
  • 参考文献(0)
  • 二级参考文献(1)
2008(1)
  • 参考文献(1)
  • 二级参考文献(0)
2009(1)
  • 参考文献(0)
  • 二级参考文献(1)
2011(2)
  • 参考文献(1)
  • 二级参考文献(1)
2012(3)
  • 参考文献(2)
  • 二级参考文献(1)
2013(4)
  • 参考文献(2)
  • 二级参考文献(2)
2014(5)
  • 参考文献(1)
  • 二级参考文献(4)
2015(2)
  • 参考文献(1)
  • 二级参考文献(1)
2016(2)
  • 参考文献(2)
  • 二级参考文献(0)
2017(4)
  • 参考文献(4)
  • 二级参考文献(0)
2018(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2019(1)
  • 引证文献(1)
  • 二级引证文献(0)
2020(1)
  • 引证文献(1)
  • 二级引证文献(0)
研究主题发展历程
节点文献
六足机器人
卷积神经网络
环境自适应
步态
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
现代机械
双月刊
1002-6886
52-1046/TH
大16开
贵州省贵阳市香狮路236号
66-25
1974
chi
出版文献量(篇)
3879
总下载数(次)
12
总被引数(次)
14061
论文1v1指导