基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
为提高医学影像的识别准确率和效率,减少人为主观因素造成的误差,采用深度学习的方法自动识别正常肝与肝硬化影像,并针对传统卷积神经网络结构复杂,训练参数多和效率低等问题,使用基于卷积神经网络中的一种轻量级模型结构SqueezeNet;并利用迁移学习的方法,通过预训练和微调参数,可以避免数量集过少时而产生的过拟合题,并且实验结果取得了较好的分类效果;首次提出使用迁移学习后的轻量级卷积神经网络与传统的模式识别算法支持向量机相结合,实现对医学图像的分类,最终实验准确率进一步提高.
推荐文章
基于深度学习的植物识别原理综述
深度学习
植物识别
神经网络
信念网络
网络结构
鲁棒性
基于深度学习的面部表情识别研究
深度学习
表情识别
神经网络
基于深度学习的手势识别算法设计
深度学习
卷积神经网络
实时手势识别
高效性
基于深度学习算法的带钢表面缺陷识别
带钢表面
深度学习
分类准确性
缺陷识别
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于深度学习的肝硬化识别
来源期刊 青岛大学学报(自然科学版) 学科 工学
关键词 深度学习 医学图像 卷积神经网络 轻量级模型 迁移学习 支持向量机
年,卷(期) 2018,(4) 所属期刊栏目 信息工程
研究方向 页码范围 54-61
页数 8页 分类号 TP391.9
字数 5167字 语种 中文
DOI 10.3969/j.issn.1006-1037.2018.11.10
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 王国栋 青岛大学计算机科学技术学院 37 170 7.0 11.0
2 赵希梅 青岛大学计算机科学技术学院 13 34 4.0 5.0
6 魏宾 8 12 2.0 3.0
7 鞠维欣 青岛大学计算机科学技术学院 2 6 2.0 2.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (53)
共引文献  (106)
参考文献  (7)
节点文献
引证文献  (2)
同被引文献  (0)
二级引证文献  (0)
1958(1)
  • 参考文献(0)
  • 二级参考文献(1)
1962(1)
  • 参考文献(0)
  • 二级参考文献(1)
1986(1)
  • 参考文献(0)
  • 二级参考文献(1)
1989(1)
  • 参考文献(0)
  • 二级参考文献(1)
1992(2)
  • 参考文献(1)
  • 二级参考文献(1)
1993(1)
  • 参考文献(0)
  • 二级参考文献(1)
1995(1)
  • 参考文献(0)
  • 二级参考文献(1)
1996(2)
  • 参考文献(0)
  • 二级参考文献(2)
1997(1)
  • 参考文献(0)
  • 二级参考文献(1)
1998(5)
  • 参考文献(1)
  • 二级参考文献(4)
2000(1)
  • 参考文献(0)
  • 二级参考文献(1)
2001(1)
  • 参考文献(0)
  • 二级参考文献(1)
2002(1)
  • 参考文献(0)
  • 二级参考文献(1)
2003(5)
  • 参考文献(2)
  • 二级参考文献(3)
2006(4)
  • 参考文献(0)
  • 二级参考文献(4)
2007(4)
  • 参考文献(0)
  • 二级参考文献(4)
2009(2)
  • 参考文献(0)
  • 二级参考文献(2)
2010(2)
  • 参考文献(0)
  • 二级参考文献(2)
2011(4)
  • 参考文献(0)
  • 二级参考文献(4)
2012(3)
  • 参考文献(0)
  • 二级参考文献(3)
2013(9)
  • 参考文献(0)
  • 二级参考文献(9)
2014(4)
  • 参考文献(1)
  • 二级参考文献(3)
2015(2)
  • 参考文献(1)
  • 二级参考文献(1)
2017(2)
  • 参考文献(1)
  • 二级参考文献(1)
2018(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2019(2)
  • 引证文献(2)
  • 二级引证文献(0)
研究主题发展历程
节点文献
深度学习
医学图像
卷积神经网络
轻量级模型
迁移学习
支持向量机
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
青岛大学学报(自然科学版)
季刊
1006-1037
37-1245/N
16开
青岛市宁夏路308号
1988
chi
出版文献量(篇)
1805
总下载数(次)
12
总被引数(次)
6176
相关基金
国家自然科学基金
英文译名:the National Natural Science Foundation of China
官方网址:http://www.nsfc.gov.cn/
项目类型:青年科学基金项目(面上项目)
学科类型:数理科学
论文1v1指导