基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
传统结构动力学模型确认方法通常采用单目标优化,存在精度不足和稳定性差等缺点,难以满足实际工程需求.基于此,提出一种采用神经网络作为代理模型,建立以马氏距离和鲁棒性为不确定性量化指标的多目标优化模型,并将NSGA2多目标进化算法用于求解.针对NSGA2存在无法有效识别伪非支配解、计算效率低和解集质量较差等设计缺陷,提出一种基于支配强度的NSGA2改进算法INSGA2-DS.INSGA2-DS将支配强度引入非支配排序,采用新型拥挤距离公式和自适应精英保留策略,以提高收敛效率和解集质量.GARTEUR飞机算例的仿真结果表明,INSGA2-DS求解复杂工程问题时具有更好的收敛性和分布性,而考虑鲁棒性的结构动力学模型确认方法可以获得同时满足多种目标要求的Parcto解集,提高了模型确认的精度和稳定性.
推荐文章
基于响应面模型的滑移门动力学特性多目标优化
滑移门
动力学分析
结构参数
响应面方法
多目标优化
基于改进NSGA-Ⅱ算法的微电网多目标优化研究
微电网
多目标优化
信息熵
Pareto最优解集
基于NSGA-Ⅱ算法的高炉生产配料多目标优化模型建立
高炉生产配料
NSGA-Ⅱ算法
成本
CO2排放量
多目标优化
Pareto最优解
基于改进的NSGA-Ⅱ多目标优化方法研究
降维
搜索空间
遗传算子
神经网络
多目标优化
非支配解
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于多目标优化NSGA2改进算法的结构动力学模型确认
来源期刊 计算力学学报 学科 工学
关键词 NSGA2 模型确认 结构动力学 鲁棒性 多目标优化
年,卷(期) 2018,(6) 所属期刊栏目 研究论文
研究方向 页码范围 669-674
页数 6页 分类号 TH212|O313
字数 4733字 语种 中文
DOI 10.7511/jslx20170828004
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 邓忠民 北京航空航天大学宇航学院 25 96 6.0 9.0
2 赖文星 北京航空航天大学宇航学院 2 14 2.0 2.0
3 张鑫杰 北京航空航天大学宇航学院 1 3 1.0 1.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (21)
共引文献  (31)
参考文献  (12)
节点文献
引证文献  (3)
同被引文献  (16)
二级引证文献  (0)
1992(1)
  • 参考文献(0)
  • 二级参考文献(1)
1993(1)
  • 参考文献(0)
  • 二级参考文献(1)
1994(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(1)
  • 参考文献(0)
  • 二级参考文献(1)
1998(1)
  • 参考文献(0)
  • 二级参考文献(1)
2000(3)
  • 参考文献(0)
  • 二级参考文献(3)
2001(1)
  • 参考文献(0)
  • 二级参考文献(1)
2002(2)
  • 参考文献(1)
  • 二级参考文献(1)
2003(2)
  • 参考文献(0)
  • 二级参考文献(2)
2004(4)
  • 参考文献(0)
  • 二级参考文献(4)
2005(3)
  • 参考文献(2)
  • 二级参考文献(1)
2006(1)
  • 参考文献(0)
  • 二级参考文献(1)
2007(3)
  • 参考文献(2)
  • 二级参考文献(1)
2008(3)
  • 参考文献(1)
  • 二级参考文献(2)
2009(1)
  • 参考文献(1)
  • 二级参考文献(0)
2010(1)
  • 参考文献(1)
  • 二级参考文献(0)
2013(1)
  • 参考文献(1)
  • 二级参考文献(0)
2014(1)
  • 参考文献(1)
  • 二级参考文献(0)
2015(1)
  • 参考文献(1)
  • 二级参考文献(0)
2016(1)
  • 参考文献(1)
  • 二级参考文献(0)
2018(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2019(1)
  • 引证文献(1)
  • 二级引证文献(0)
2020(2)
  • 引证文献(2)
  • 二级引证文献(0)
研究主题发展历程
节点文献
NSGA2
模型确认
结构动力学
鲁棒性
多目标优化
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算力学学报
双月刊
1007-4708
21-1373/O3
大16开
大连市甘井子区凌工路2号(大连理工大学校内)
8-180
1983
chi
出版文献量(篇)
3087
总下载数(次)
2
总被引数(次)
46175
相关基金
国家自然科学基金
英文译名:the National Natural Science Foundation of China
官方网址:http://www.nsfc.gov.cn/
项目类型:青年科学基金项目(面上项目)
学科类型:数理科学
论文1v1指导