基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
基于稀疏编码的方法在单幅图像的超分辨率重建中获得了一定的成功,但是这类方法却存在着重建出错误的边缘和重建的图像块之间差异性的丢失等问题.为了解决这些问题,认为一幅高分辨率图像是由边缘成分和纹理成分两部分组成,提出了一种基于L0范数和非局部拉普拉斯稀疏编码的单幅图像超分辨率重建方法.首先,为了能够重建出正确的图像边缘,提出了一种基于L0范数的针对图像边缘的超分辨率重建方法;然后,在纹理成分的超分辨率重建阶段,提出了一种非局部的拉普拉斯稀疏编码(NLSC)来实现图像纹理成分的超分辨率重建;最后,试验结果表明,提出的方法能够有效解决现有方法中存在的问题,获得更高质量的高分辨率图像.
推荐文章
改进的单幅图像自学习超分辨率重建方法
单幅图像超分辨率
L2范数
协作表示
支持向量回归
基于稀疏表示的图像超分辨率重建算法
超分辨率重建
稀疏表示
L1范数优化
字典学习
粒子群优化算法
特征提取算子
采用共享空间稀疏表示的单幅图像超分辨率方法
超分辨率
稀疏表示
典型相关分析
自然图像先验
深度学习下的高效单幅图像超分辨率重建方法
深度学习
超分辨率重建
卷积神经网络
亚像素卷积
风格转移
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于L0范数和稀疏编码的单幅图像超分辨率重建方法
来源期刊 电子测量与仪器学报 学科 工学
关键词 超分辨率重建 边缘结构 纹理成分 L0范数 非局部拉普拉斯稀疏编码
年,卷(期) 2018,(11) 所属期刊栏目 学术论文
研究方向 页码范围 194-201
页数 8页 分类号 TN911.73
字数 语种 中文
DOI 10.13382/j.jemi.2018.11.026
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 张剑 10 5 1.0 1.0
2 刘萍萍 1 0 0.0 0.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (14)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2006(1)
  • 参考文献(1)
  • 二级参考文献(0)
2008(1)
  • 参考文献(1)
  • 二级参考文献(0)
2009(1)
  • 参考文献(1)
  • 二级参考文献(0)
2010(1)
  • 参考文献(1)
  • 二级参考文献(0)
2012(3)
  • 参考文献(3)
  • 二级参考文献(0)
2013(4)
  • 参考文献(4)
  • 二级参考文献(0)
2017(3)
  • 参考文献(3)
  • 二级参考文献(0)
2018(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
超分辨率重建
边缘结构
纹理成分
L0范数
非局部拉普拉斯稀疏编码
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
电子测量与仪器学报
月刊
1000-7105
11-2488/TN
大16开
北京市东城区北河沿大街79号
80-403
1987
chi
出版文献量(篇)
4663
总下载数(次)
23
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导