基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
生成对抗网络(Generative adversarial nets, GANs) 将生成模型与判别模型进行了巧妙结合,采用无监督的训练方式,通过相互对抗共同提高,其在学术界掀起了一股新的机器学习热潮.GANs 的学习目标是可以完整拟合任意真实样本的数据分布,然而在实际当中,真实样本分布的复杂程度难以预计,容易发生模式坍塌(Mode collapse) 等问题,从而导致结果冗余,模型不收敛等.为提高无监督条件下的GANs生成能力,减少或消除模式坍塌,本文提出一种全新的协作式生成网络结构,通过构建多个生成模型,引入协作机制,使得生成模型在训练过程中能够相互学习,共同进步,从而提高模型对真实数据的拟合能力,进一步提高生成质量.通过在三组不同类型的数据集上进行实验,分析对比结果后发现新模型在二维图像生成方面,特别是人脸图片,有着显著的效果,协作机制不仅可以加快模型收敛速度,提高训练效率,还能消除损失函数噪声,在三维模型生成方面也产生了一定的影响.通过调整模型参数,模式坍塌问题也得到了遏制.本文还设计了一种动态学习方法,动态调节模型的学习速率,有效减少了过大或过小的梯度惩罚.
推荐文章
生成对抗网络研究综述
GAN
神经对抗网络
二人博弈
人工智能
深度学习
生成式模型
基于条件的边界平衡生成对抗网络
生成对抗网络
条件特征
边界平衡
图像生成
基于生成对抗网络的航班起飞风险预测
航班起飞风险预测
数据增强
生成对抗网络
神经网络
分类重构堆栈生成对抗网络的文本生成图像模型
文本生成图像
堆栈生成对抗网络
分类
重构
跨模态学习
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 协作式生成对抗网络
来源期刊 自动化学报 学科
关键词 生成对抗网络 协作式 模式坍塌 生成模型 无监督学习
年,卷(期) 2018,(5) 所属期刊栏目 论文与报告
研究方向 页码范围 804-810
页数 7页 分类号
字数 5070字 语种 中文
DOI 10.16383/j.aas.2018.c170483
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 赵杰煜 宁波大学信息科学与工程学院 82 637 14.0 21.0
2 叶绪伦 宁波大学信息科学与工程学院 3 15 2.0 3.0
3 董伟 宁波大学信息科学与工程学院 2 10 1.0 2.0
4 张龙 宁波大学信息科学与工程学院 1 10 1.0 1.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (6)
节点文献
引证文献  (10)
同被引文献  (16)
二级引证文献  (4)
1998(1)
  • 参考文献(1)
  • 二级参考文献(0)
2006(1)
  • 参考文献(1)
  • 二级参考文献(0)
2007(1)
  • 参考文献(1)
  • 二级参考文献(0)
2011(1)
  • 参考文献(1)
  • 二级参考文献(0)
2012(2)
  • 参考文献(2)
  • 二级参考文献(0)
2018(1)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(1)
  • 二级引证文献(0)
2018(1)
  • 引证文献(1)
  • 二级引证文献(0)
2019(8)
  • 引证文献(8)
  • 二级引证文献(0)
2020(5)
  • 引证文献(1)
  • 二级引证文献(4)
研究主题发展历程
节点文献
生成对抗网络
协作式
模式坍塌
生成模型
无监督学习
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
自动化学报
月刊
0254-4156
11-2109/TP
大16开
北京市海淀区中关村东路95号(北京2728信箱)
2-180
1963
chi
出版文献量(篇)
4124
总下载数(次)
26
相关基金
国家自然科学基金
英文译名:the National Natural Science Foundation of China
官方网址:http://www.nsfc.gov.cn/
项目类型:青年科学基金项目(面上项目)
学科类型:数理科学
浙江省自然科学基金
英文译名:
官方网址:http://www.zjnsf.net/
项目类型:一般项目
学科类型:
论文1v1指导