基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
针对高光谱遥感影像分类过程中,高维数据引起的“维数灾难”以及空间邻域一致性信息没有得到充分利用的问题,提出一种基于边缘保持滤波(Edge-preserving filtering,EPF)的高光谱影像光谱-空间联合分类算法.该算法首先进行波段子集划分和主成分提取,构造新的低维特征集,在保存影像结构信息的前提下降低数据维度;其次利用支持向量机(Support vector machine,SVM)获得低维特征集的初始分类概率图;然后利用原始影像主成分对初始分类概率图进行边缘保持滤波,融合光谱信息和空间信息;最后根据滤波后分类概率图对应像素点值的大小确定每个像素的类别.在Indian Pines和Pavia University两组高光谱数据上进行仿真实验,相同实验条件下,本文算法都获得最高分类精度和最少的时间消耗.仿真结果表明本文算法在高光谱遥感影像分类任务中具有明显的优势.
推荐文章
基于高光谱影像的树种分类
高光谱
超光谱成像仪(HSI)
树种分类
光谱角填图
线性波谱分离
基于医学高光谱显微图像光谱空间信息的血细胞分类
医学高光谱成像
血细胞分类
Gabor滤波器
稀疏表示
结合纹理信息Hyperion高光谱影像分类
森林测计学
遥感
分类
高光谱
端元
纹理
谐波能量谱特征向量的高光谱影像Bayes分类
高光谱影像
频率域变换
谐波分析
能量谱
Bayes准则
监督分类
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于边缘保持滤波的高光谱影像光谱-空间联合分类
来源期刊 自动化学报 学科
关键词 高光谱 边缘保持滤波 支持向量机 光谱-空间联合分类
年,卷(期) 2018,(2) 所属期刊栏目 论文与报告
研究方向 页码范围 280-288
页数 9页 分类号
字数 6113字 语种 中文
DOI 10.16383/j.aas.2018.c160704
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 韩敏 大连理工大学电子信息与电气工程学部 200 2311 23.0 33.0
2 张成坤 大连理工大学电子信息与电气工程学部 1 7 1.0 1.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (29)
共引文献  (4)
参考文献  (15)
节点文献
引证文献  (7)
同被引文献  (33)
二级引证文献  (2)
1968(1)
  • 参考文献(0)
  • 二级参考文献(1)
1999(1)
  • 参考文献(0)
  • 二级参考文献(1)
2000(1)
  • 参考文献(0)
  • 二级参考文献(1)
2002(1)
  • 参考文献(0)
  • 二级参考文献(1)
2004(1)
  • 参考文献(0)
  • 二级参考文献(1)
2005(2)
  • 参考文献(1)
  • 二级参考文献(1)
2006(2)
  • 参考文献(1)
  • 二级参考文献(1)
2007(1)
  • 参考文献(0)
  • 二级参考文献(1)
2008(2)
  • 参考文献(0)
  • 二级参考文献(2)
2009(4)
  • 参考文献(1)
  • 二级参考文献(3)
2010(3)
  • 参考文献(1)
  • 二级参考文献(2)
2011(3)
  • 参考文献(0)
  • 二级参考文献(3)
2012(1)
  • 参考文献(0)
  • 二级参考文献(1)
2013(9)
  • 参考文献(2)
  • 二级参考文献(7)
2014(8)
  • 参考文献(5)
  • 二级参考文献(3)
2015(3)
  • 参考文献(3)
  • 二级参考文献(0)
2016(1)
  • 参考文献(1)
  • 二级参考文献(0)
2018(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2019(5)
  • 引证文献(5)
  • 二级引证文献(0)
2020(4)
  • 引证文献(2)
  • 二级引证文献(2)
研究主题发展历程
节点文献
高光谱
边缘保持滤波
支持向量机
光谱-空间联合分类
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
自动化学报
月刊
0254-4156
11-2109/TP
大16开
北京市海淀区中关村东路95号(北京2728信箱)
2-180
1963
chi
出版文献量(篇)
4124
总下载数(次)
26
总被引数(次)
120705
相关基金
国家自然科学基金
英文译名:the National Natural Science Foundation of China
官方网址:http://www.nsfc.gov.cn/
项目类型:青年科学基金项目(面上项目)
学科类型:数理科学
论文1v1指导