作者:
原文服务方: 计算机应用研究       
摘要:
针对粒子群多模优化问题中存在的易早熟、收敛速度慢及寻优精度低等问题,提出了一种快速多种群的粒子群多模优化算法.首先采用动态半径及种群划分策略,避兔了多种群区域重叠问题;然后引入拓扑机制,使种群内粒子在速度上保持同步,以群落为单位在解空间上飞行,加快进化速度;同时增加种群之间的交流,在多样性和快速收敛之间达到平衡;最后采用随机权重、异步变化因子及种群淘汰策略,提高算法的搜索能力和学习能力.通过几个典型测试函数的实验结果表明,该算法具有较好的多模态寻优率,在收敛速度和精度等方面均有提高.
推荐文章
一种多粒子群的协同优化算法
PSO
MPSCO
群集智能
协同优化
一种新型的动态粒子群优化算法
粒子群优化算法
多种群
种群分裂
种群混合
一种基于子群变异的粒子群优化算法
早熟收敛
粒子群优化算法
随机定向振荡式搜索
子群
变异
多模态函数优化
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 一种快速多种群的粒子群多模优化算法
来源期刊 计算机应用研究 学科
关键词 粒子群优化 多模优化 多种群 动态半径 拓扑机制
年,卷(期) 2018,(11) 所属期刊栏目 算法研究探讨
研究方向 页码范围 3286-3289
页数 4页 分类号 TP301.6
字数 语种 中文
DOI 10.3969/j.issn.1001-3695.2018.11.020
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 陈小玉 南阳理工学院计算机与信息工程学院 20 56 4.0 6.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (75)
共引文献  (87)
参考文献  (14)
节点文献
引证文献  (2)
同被引文献  (17)
二级引证文献  (0)
1965(1)
  • 参考文献(0)
  • 二级参考文献(1)
1993(1)
  • 参考文献(0)
  • 二级参考文献(1)
1996(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(1)
  • 参考文献(0)
  • 二级参考文献(1)
2000(1)
  • 参考文献(0)
  • 二级参考文献(1)
2002(4)
  • 参考文献(0)
  • 二级参考文献(4)
2003(1)
  • 参考文献(0)
  • 二级参考文献(1)
2004(3)
  • 参考文献(0)
  • 二级参考文献(3)
2005(3)
  • 参考文献(0)
  • 二级参考文献(3)
2006(8)
  • 参考文献(0)
  • 二级参考文献(8)
2007(9)
  • 参考文献(0)
  • 二级参考文献(9)
2008(5)
  • 参考文献(0)
  • 二级参考文献(5)
2009(3)
  • 参考文献(0)
  • 二级参考文献(3)
2010(4)
  • 参考文献(1)
  • 二级参考文献(3)
2011(4)
  • 参考文献(0)
  • 二级参考文献(4)
2012(13)
  • 参考文献(3)
  • 二级参考文献(10)
2013(5)
  • 参考文献(1)
  • 二级参考文献(4)
2014(9)
  • 参考文献(2)
  • 二级参考文献(7)
2015(5)
  • 参考文献(1)
  • 二级参考文献(4)
2016(4)
  • 参考文献(2)
  • 二级参考文献(2)
2017(4)
  • 参考文献(4)
  • 二级参考文献(0)
2018(1)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(1)
  • 二级引证文献(0)
2018(1)
  • 引证文献(1)
  • 二级引证文献(0)
2020(1)
  • 引证文献(1)
  • 二级引证文献(0)
研究主题发展历程
节点文献
粒子群优化
多模优化
多种群
动态半径
拓扑机制
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机应用研究
月刊
1001-3695
51-1196/TP
大16开
1984-01-01
chi
出版文献量(篇)
21004
总下载数(次)
0
总被引数(次)
238385
论文1v1指导