基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
为了实现对四旋翼无人机的自稳定控制,首先对四旋翼无人机进行了动力学建模,提出了一种改变学习率的BP神经网络算法与PID控制相结合的姿态控制方法,并在相同环境下与常规PID控制器进行了仿真试验对比.仿真试验结果表明:基于改进型BP神经网络的PID控制器能够有效地实现无人机的自稳定控制,相比于常规PID控制器,基于改进型BP神经网络的PID控制器具有响应速度快、超调量低、鲁棒性强等优点.
推荐文章
基于共轭梯度法的改进型BP神经网络PID控制算法
BP神经网络
PID控制器
共轭梯度法
基于改进型BP神经网络的电网负荷预测
电网负荷预测
BP神经网络
模拟退火优化算法
预测误差
基于改进型BP神经网络的打浆度软测量
软测量
打浆度
神经网络
泛化
改进型Elman神经网络在电石炉控制系统中的应用
改进型Elman神经网络
RBF神经网络
电石炉
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于改进型BP神经网络的四旋翼控制系统
来源期刊 甘肃科学学报 学科 航空航天
关键词 四旋翼无人机 动力学建模 学习率 BP神经网络
年,卷(期) 2019,(2) 所属期刊栏目 工程技术
研究方向 页码范围 87-91
页数 5页 分类号 V279
字数 2935字 语种 中文
DOI 10.16468/j.cnki.issn1004-0366.2019.02.015
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 余后明 中北大学机电工程学院 2 5 2.0 2.0
2 刘彦臣 中北大学机电工程学院 12 60 4.0 7.0
3 郑士振 中北大学机电工程学院 1 2 1.0 1.0
4 常建龙 中北大学机电工程学院 6 5 2.0 2.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (34)
共引文献  (176)
参考文献  (8)
节点文献
引证文献  (2)
同被引文献  (0)
二级引证文献  (0)
1994(1)
  • 参考文献(0)
  • 二级参考文献(1)
1998(1)
  • 参考文献(0)
  • 二级参考文献(1)
2000(1)
  • 参考文献(0)
  • 二级参考文献(1)
2002(1)
  • 参考文献(0)
  • 二级参考文献(1)
2003(2)
  • 参考文献(0)
  • 二级参考文献(2)
2004(1)
  • 参考文献(0)
  • 二级参考文献(1)
2005(2)
  • 参考文献(0)
  • 二级参考文献(2)
2006(3)
  • 参考文献(0)
  • 二级参考文献(3)
2007(5)
  • 参考文献(0)
  • 二级参考文献(5)
2008(2)
  • 参考文献(0)
  • 二级参考文献(2)
2009(8)
  • 参考文献(1)
  • 二级参考文献(7)
2010(4)
  • 参考文献(0)
  • 二级参考文献(4)
2011(2)
  • 参考文献(2)
  • 二级参考文献(0)
2012(2)
  • 参考文献(1)
  • 二级参考文献(1)
2013(2)
  • 参考文献(1)
  • 二级参考文献(1)
2015(2)
  • 参考文献(1)
  • 二级参考文献(1)
2016(1)
  • 参考文献(0)
  • 二级参考文献(1)
2017(1)
  • 参考文献(1)
  • 二级参考文献(0)
2018(1)
  • 参考文献(1)
  • 二级参考文献(0)
2019(2)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(2)
  • 二级引证文献(0)
2019(2)
  • 引证文献(2)
  • 二级引证文献(0)
研究主题发展历程
节点文献
四旋翼无人机
动力学建模
学习率
BP神经网络
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
甘肃科学学报
双月刊
1004-0366
62-1098/N
大16开
兰州市定西南路299号
54-66
1989
chi
出版文献量(篇)
3450
总下载数(次)
10
总被引数(次)
17420
论文1v1指导