基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
复杂背景下运动人体目标的自动检测与跟踪效果常易受环境光线变化的干扰.面向变光线环境下运动人体检测与跟踪,提出一种基于混合高斯模型优化的Camshift检测跟踪算法,首先采用混合高斯模型进行前景建模,将外界扰动作为背景信息进行处理;然后进行色彩空间转换并计算反向投影值,进一步利用Meanshift迭代定位运动目标;最后,通过更新混合高斯模型及后续帧的处理保持人体目标的有效检测及跟踪.实验结果表明,该方法相较于传统的光流方法及Camshift算法,可更好地适应环境光线变化及枝叶晃动影响,较好地获取运动目标前景信息,提高运动人体目标的检测及跟踪精度.
推荐文章
基于高斯混合模型与PCA-HOG的快速运动人体检测
运动人体检测
混合高斯模型
主成分分析(PCA)
梯度方向直方图(HOG)
PCA-HOG描述子
基于改进高斯混合模型的运动目标检测与跟踪
运动目标检测
全局匹配
改进高斯混合模型
分块处理
基于高斯混合模型联合CamShift的运动图像检测跟踪方法
高斯混合模型
CamShift算法
运动检测
基于改进高斯混合模型的体育视频运动目标检测与跟踪
高斯混合模型
体育视频
运动目标
目标检测
目标跟踪
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于混合高斯模型优化的运动人体跟踪方法
来源期刊 南京师范大学学报(工程技术版) 学科 工学
关键词 目标跟踪 混合高斯模型 光流法 Camshift算法
年,卷(期) 2019,(1) 所属期刊栏目 信息工程
研究方向 页码范围 51-57
页数 7页 分类号 TP391.4
字数 5289字 语种 中文
DOI 10.3969/j.issn.1672-1292.2019.01.007
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (20)
共引文献  (20)
参考文献  (12)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1981(1)
  • 参考文献(0)
  • 二级参考文献(1)
1985(1)
  • 参考文献(0)
  • 二级参考文献(1)
1994(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(1)
  • 参考文献(0)
  • 二级参考文献(1)
1999(1)
  • 参考文献(0)
  • 二级参考文献(1)
2002(2)
  • 参考文献(0)
  • 二级参考文献(2)
2004(2)
  • 参考文献(0)
  • 二级参考文献(2)
2005(4)
  • 参考文献(0)
  • 二级参考文献(4)
2006(3)
  • 参考文献(0)
  • 二级参考文献(3)
2008(2)
  • 参考文献(0)
  • 二级参考文献(2)
2010(1)
  • 参考文献(0)
  • 二级参考文献(1)
2011(1)
  • 参考文献(1)
  • 二级参考文献(0)
2012(2)
  • 参考文献(1)
  • 二级参考文献(1)
2014(2)
  • 参考文献(2)
  • 二级参考文献(0)
2015(2)
  • 参考文献(2)
  • 二级参考文献(0)
2016(2)
  • 参考文献(2)
  • 二级参考文献(0)
2017(2)
  • 参考文献(2)
  • 二级参考文献(0)
2018(2)
  • 参考文献(2)
  • 二级参考文献(0)
2019(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
目标跟踪
混合高斯模型
光流法
Camshift算法
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
南京师范大学学报(工程技术版)
季刊
1672-1292
32-1684/T
大16开
南京市宁海路122号
2001
chi
出版文献量(篇)
1491
总下载数(次)
3
总被引数(次)
7734
相关基金
国家自然科学基金
英文译名:the National Natural Science Foundation of China
官方网址:http://www.nsfc.gov.cn/
项目类型:青年科学基金项目(面上项目)
学科类型:数理科学
江苏省自然科学基金
英文译名:Natural Science Foundation of Jiangsu Province
官方网址:http://www.jsnsf.gov.cn/News.aspx?a=37
项目类型:
学科类型:
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导