基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
针对当前机器人模仿学习过程中,运动模仿存在无法收敛到目标点以及泛化能力差的问题,引入一种基于动态系统(dynamical system,DS)的模仿学习方法.该方法通过高斯混合模型(gaussian mixture model,GMM)将示教运动数据建模为一非线性动态系统;将DS全局稳定的充分条件作为约束,以保证DS所生成的所有轨迹收敛到目标点;将动态系统模型的参数学习问题转化为求解一个约束优化问题,从而得到模型参数.以7bot机械臂为实验对象,进行仿真实验和机器人实验,实验结果表明:该方法学习的DS模型从不同起点生成的所有轨迹都收敛到目标点,轨迹平滑,泛化能力好.
推荐文章
基于概率轨迹匹配的机器人模仿学习方法
模仿学习
概率模型
轨迹匹配
高斯过程
控制策略
模仿学习在机器人领域的应用进展
人工智能
模仿学习
演示
机器人
采用核增强学习方法的多机器人编队控制
多机器人
编队控制
增强学习
策略评测
策略迭代
核方法
机器人示教缝纫动作的学习方法
缝纫机器人
OPENPOSE模型
示教动作
高斯混合模型
高斯混合回归
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于动态系统的机器人模仿学习方法研究
来源期刊 智能系统学报 学科 工学
关键词 机器人 模仿学习 轨迹层面 高斯混合模型 动态系统 参数学习 7bot机械臂 泛化能力
年,卷(期) 2019,(5) 所属期刊栏目
研究方向 页码范围 1026-1034
页数 9页 分类号 TP242.6
字数 6344字 语种 中文
DOI 10.11992/tis.201807018
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 左国玉 北京工业大学信息学部 26 195 7.0 13.0
5 阮晓钢 北京工业大学信息学部 240 2182 23.0 35.0
9 于建均 北京工业大学信息学部 46 241 8.0 13.0
13 姚红柯 北京工业大学信息学部 1 0 0.0 0.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (67)
共引文献  (11)
参考文献  (12)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1998(1)
  • 参考文献(0)
  • 二级参考文献(1)
1999(6)
  • 参考文献(1)
  • 二级参考文献(5)
2000(1)
  • 参考文献(0)
  • 二级参考文献(1)
2001(1)
  • 参考文献(0)
  • 二级参考文献(1)
2002(1)
  • 参考文献(0)
  • 二级参考文献(1)
2003(1)
  • 参考文献(0)
  • 二级参考文献(1)
2004(7)
  • 参考文献(1)
  • 二级参考文献(6)
2005(3)
  • 参考文献(0)
  • 二级参考文献(3)
2006(2)
  • 参考文献(0)
  • 二级参考文献(2)
2007(2)
  • 参考文献(0)
  • 二级参考文献(2)
2008(6)
  • 参考文献(2)
  • 二级参考文献(4)
2009(5)
  • 参考文献(0)
  • 二级参考文献(5)
2010(9)
  • 参考文献(0)
  • 二级参考文献(9)
2011(8)
  • 参考文献(0)
  • 二级参考文献(8)
2012(6)
  • 参考文献(0)
  • 二级参考文献(6)
2013(6)
  • 参考文献(1)
  • 二级参考文献(5)
2014(4)
  • 参考文献(1)
  • 二级参考文献(3)
2015(5)
  • 参考文献(1)
  • 二级参考文献(4)
2016(4)
  • 参考文献(4)
  • 二级参考文献(0)
2018(1)
  • 参考文献(1)
  • 二级参考文献(0)
2019(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
机器人
模仿学习
轨迹层面
高斯混合模型
动态系统
参数学习
7bot机械臂
泛化能力
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
智能系统学报
双月刊
1673-4785
23-1538/TP
大16开
哈尔滨市南岗区南通大街145-1号楼
2006
chi
出版文献量(篇)
2770
总下载数(次)
11
论文1v1指导