基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
近年来,Siamese网络由于其良好的跟踪精度和较快的跟踪速度,在视觉跟踪领域引起极大关注,但大多数Siamese网络并未考虑模型更新,从而引起跟踪错误.针对这一不足,该文提出一种基于双模板Siamese网络的视觉跟踪算法.首先,保留响应图中响应值稳定的初始帧作为基准模板R,同时使用改进的APCEs模型更新策略确定动态模板T.然后,通过对候选目标区域与2个模板匹配度结果的综合分析,对结果响应图进行融合,以得到更加准确的跟踪结果.在OTB2013和OTB2015数据集上的实验结果表明,与当前5种主流跟踪算法相比,该文算法的跟踪精度和成功率具有明显优势,不仅在尺度变化、平面内旋转、平面外旋转、遮挡、光照变化情况下具有较好的跟踪效果,而且达到了46帧/s的跟踪速度.
推荐文章
均值漂移跟踪的双模板更新算法
均值漂移
目标跟踪
模板更新
双模板
基于相关匹配及双模式模板更新的跟踪方法
自适应阈值
分块相关
双模式模板更新
遮挡处理
Kalman滤波
基于动态神经网络的鲁棒自适应跟踪
动态神经网络
仿射非线性系统
鲁棒自适应跟踪
前视红外目标的鲁棒分层跟踪算法
前视红外
目标跟踪
均值漂移
特征匹配
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于双模板Siamese网络的鲁棒视觉跟踪算法
来源期刊 电子与信息学报 学科 工学
关键词 Siamese网络 目标跟踪 双模板 模板更新
年,卷(期) 2019,(9) 所属期刊栏目 论文
研究方向 页码范围 2247-2255
页数 9页 分类号 TP391.4
字数 5633字 语种 中文
DOI 10.11999/JEIT181018
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 范九伦 西安邮电大学计算机学院 250 2961 27.0 43.0
2 余旺盛 空军工程大学信息与导航学院 71 426 10.0 17.0
3 马素刚 西安邮电大学计算机学院 20 95 6.0 8.0
7 侯志强 西安邮电大学计算机学院 14 39 4.0 6.0
11 陈立琳 西安邮电大学计算机学院 1 0 0.0 0.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (93)
共引文献  (202)
参考文献  (5)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1986(1)
  • 参考文献(0)
  • 二级参考文献(1)
1988(3)
  • 参考文献(0)
  • 二级参考文献(3)
1989(1)
  • 参考文献(0)
  • 二级参考文献(1)
1993(4)
  • 参考文献(0)
  • 二级参考文献(4)
1994(1)
  • 参考文献(0)
  • 二级参考文献(1)
1995(5)
  • 参考文献(0)
  • 二级参考文献(5)
1996(2)
  • 参考文献(0)
  • 二级参考文献(2)
1997(5)
  • 参考文献(0)
  • 二级参考文献(5)
1998(12)
  • 参考文献(0)
  • 二级参考文献(12)
1999(6)
  • 参考文献(0)
  • 二级参考文献(6)
2000(12)
  • 参考文献(0)
  • 二级参考文献(12)
2001(11)
  • 参考文献(0)
  • 二级参考文献(11)
2002(7)
  • 参考文献(0)
  • 二级参考文献(7)
2003(5)
  • 参考文献(0)
  • 二级参考文献(5)
2004(15)
  • 参考文献(0)
  • 二级参考文献(15)
2005(3)
  • 参考文献(0)
  • 二级参考文献(3)
2006(1)
  • 参考文献(1)
  • 二级参考文献(0)
2014(1)
  • 参考文献(1)
  • 二级参考文献(0)
2015(2)
  • 参考文献(2)
  • 二级参考文献(0)
2017(1)
  • 参考文献(1)
  • 二级参考文献(0)
2019(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
Siamese网络
目标跟踪
双模板
模板更新
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
电子与信息学报
月刊
1009-5896
11-4494/TN
大16开
北京市北四环西路19号
2-179
1979
chi
出版文献量(篇)
9870
总下载数(次)
11
总被引数(次)
95911
相关基金
国家自然科学基金
英文译名:the National Natural Science Foundation of China
官方网址:http://www.nsfc.gov.cn/
项目类型:青年科学基金项目(面上项目)
学科类型:数理科学
论文1v1指导