贝叶斯粗糙集处理噪声数据能力强,分类肺部肿瘤CT图像结果准确,为图像去噪提供精准的图像分类结果.基于此,设计基于贝叶斯粗糙集的肺部肿瘤CT图像抗噪算法,基于贝叶斯粗糙集分类模型进行肺部CT图像分类,约简贝叶斯粗糙集属性和决策规则,基于决策规则预测肺部CT图像类别;对存在肿瘤的CT图像噪声小波系数构建拉普拉斯数学模型,基于贝叶斯最大后验概率估计小波系数概率密度,计算噪声方差和子代小波系数标准差,使去噪算法具备自适应性;基于小波系数的概率密度得到最大后验(maxi-mum a posteriori,MAP)估计值,对该值做小波反变换,实现肺部肿瘤CT图像自适应去噪.结果表明,该算法去除肺部肿瘤CT图像噪声效果好,抗噪能力强,较好保留图像细节特征,视觉效果佳.