基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
针对卷积神经网络(CNN)模型的压缩和加速问题,提出基于滤波器裁剪的新型卷积神经网络模型加速算法.通过计算卷积层中滤波器的标准差值衡量该滤波器的重要程度,裁剪对神经网络准确率影响较小的滤波器及对应的特征图,可以有效地降低计算成本.与裁剪权重不同,该算法不会导致网络稀疏连接,不需要应用特殊的稀疏矩阵计算库.基于CIFAR-10数据集的实验结果表明,该滤波器裁剪算法能够对VGG-16和ResNet-110模型加速30%以上,通过微调继承的预训练参数可以使结果接近或达到原始模型的精度.
推荐文章
基于FPGA的卷积神经网络加速器设计与实现
卷积神经网络
现场可编程门阵列
加速器
有限资源
基于神经网络的4型FIR滤波器的优化设计
神经网络
正弦基
高通滤波器
优化设计
线性相位
基于扩展卡尔曼滤波器的RBF神经网络学习算法
扩展卡尔曼滤波器
径向基函数
神经网络
带有次优渐消因子的扩展卡尔曼滤波器
稀疏卷积神经网络加速器设计
稀疏卷积神经网络
阵列运算
加速器
高能效比
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于滤波器裁剪的卷积神经网络加速算法
来源期刊 浙江大学学报(工学版) 学科 工学
关键词 深度学习 卷积神经网络(CNN) 模型压缩 滤波器 特征图
年,卷(期) 2019,(10) 所属期刊栏目 自动化技术、计算机技术
研究方向 页码范围 1994-2002
页数 9页 分类号 TP183
字数 4935字 语种 中文
DOI 10.3785/j.issn.1008-973X.2019.10.017
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 韩波 浙江大学航空航天学院 62 695 16.0 24.0
2 李浩 浙江大学航空航天学院 28 371 9.0 19.0
3 赵文杰 浙江大学航空航天学院 3 2 1.0 1.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (2)
节点文献
引证文献  (1)
同被引文献  (0)
二级引证文献  (0)
2005(1)
  • 参考文献(1)
  • 二级参考文献(0)
2016(1)
  • 参考文献(1)
  • 二级参考文献(0)
2019(1)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(1)
  • 二级引证文献(0)
2019(1)
  • 引证文献(1)
  • 二级引证文献(0)
研究主题发展历程
节点文献
深度学习
卷积神经网络(CNN)
模型压缩
滤波器
特征图
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
浙江大学学报(工学版)
月刊
1008-973X
33-1245/T
大16开
杭州市浙大路38号
32-40
1956
chi
出版文献量(篇)
6865
总下载数(次)
6
总被引数(次)
81907
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导