基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
为精确地分割高分辨率无人机航拍图像中的不同地物,提出一种基于超像素和超度量轮廓图的无人机图像分割算法.首先对图像进行线性谱聚类,生成超像素;然后根据HSV颜色空间的直方图特征计算超像素区域间的不相似度;再结合层次分割思想得到可表示边缘强度的超度量轮廓图并将其归一化;最后利用合适的阈值删除边缘强度低于该阈值的轮廓,并将所对应的区域进行合并得到分割后的图像.与ISODATA,FCM和gPb-OWT-UCM算法比较的实验结果表明,该算法图像分割准确率较高,对初始参数的依赖性小,且计算复杂度低.
推荐文章
基于超像素的木材表面缺陷图像分割算法
木材表面缺陷
超像素
图像分割
基于稀疏表示超像素分类的肿瘤超声图像分割算法
稀疏表示
超声图像
肿瘤分割
简单线性迭代聚类
基于聚类的超像素分割算法研究
超像素
图像分割
聚类
评价指标
基于无人机航拍图像的车辆间距检测算法
无人机航拍图像
车辆间距
高斯滤波
灰度处理
Canny算子
边缘检测
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于超像素和超度量轮廓图的无人机图像分割算法
来源期刊 计算机辅助设计与图形学学报 学科 工学
关键词 无人机图像 图像分割 超像素 线性谱聚类 超度量轮廓图
年,卷(期) 2019,(8) 所属期刊栏目 图形与可视化
研究方向 页码范围 1294-1300
页数 7页 分类号 TP391.41
字数 4965字 语种 中文
DOI 10.3724/SP.J.1089.2019.17563
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 骆有庆 北京林业大学林学院 268 3538 32.0 41.0
2 宗世祥 北京林业大学林学院 111 1203 19.0 27.0
3 宋以宁 北京林业大学信息学院 6 19 2.0 4.0
4 刘文萍 北京林业大学信息学院 27 264 9.0 15.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (19)
共引文献  (6)
参考文献  (9)
节点文献
引证文献  (2)
同被引文献  (6)
二级引证文献  (0)
1985(2)
  • 参考文献(0)
  • 二级参考文献(2)
1986(1)
  • 参考文献(0)
  • 二级参考文献(1)
1993(3)
  • 参考文献(0)
  • 二级参考文献(3)
1994(2)
  • 参考文献(0)
  • 二级参考文献(2)
1996(2)
  • 参考文献(1)
  • 二级参考文献(1)
1997(1)
  • 参考文献(0)
  • 二级参考文献(1)
2002(1)
  • 参考文献(0)
  • 二级参考文献(1)
2004(2)
  • 参考文献(0)
  • 二级参考文献(2)
2005(1)
  • 参考文献(0)
  • 二级参考文献(1)
2006(1)
  • 参考文献(0)
  • 二级参考文献(1)
2007(3)
  • 参考文献(2)
  • 二级参考文献(1)
2008(2)
  • 参考文献(0)
  • 二级参考文献(2)
2009(1)
  • 参考文献(0)
  • 二级参考文献(1)
2010(1)
  • 参考文献(1)
  • 二级参考文献(0)
2011(1)
  • 参考文献(1)
  • 二级参考文献(0)
2015(1)
  • 参考文献(1)
  • 二级参考文献(0)
2016(1)
  • 参考文献(1)
  • 二级参考文献(0)
2017(1)
  • 参考文献(1)
  • 二级参考文献(0)
2018(1)
  • 参考文献(1)
  • 二级参考文献(0)
2019(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2020(2)
  • 引证文献(2)
  • 二级引证文献(0)
研究主题发展历程
节点文献
无人机图像
图像分割
超像素
线性谱聚类
超度量轮廓图
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机辅助设计与图形学学报
月刊
1003-9775
11-2925/TP
大16开
北京2704信箱
82-456
1989
chi
出版文献量(篇)
6095
总下载数(次)
15
总被引数(次)
94943
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导