基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
针对传统图像重建过程中易丢失细节信息,或在增强细节的同时易产生边缘失真和噪声等问题,提出一种基于图像跨尺度相似性和特征组合的图像超分辨率重建方法.首先利用图像的跨尺度相似性,采用KNN算法分别建立高、低分辨率图像之间的像素特征和梯度特征的映射关系;然后利用像素特征映射关系对输入图像重建包含高频信息的高分辨图像;利用奇异值阈值化获取输入图像的有效高频信息,并利用梯度特征映射关系将高频信息放大后分块叠加到高分辨率图像上,得到最终的图像重建结果.以加州大学图像分割数据库作为实验数据,在Windows7下的Matlab软件进行实验结果展示,实验结果表明,文中方法重建的图像纹理细节丰富、边缘清晰,图像细节显著增强,在视觉效果和客观指标上都有大幅度提升;且该方法无需依赖外部数据库.
推荐文章
基于图像自相似性的多尺度稀疏表示肺4D-CT图像超分辨率重建
四维计算机断层摄影
超分辨率重建
图像自相似性
多尺度分析
稀疏表示
基于改进PatchMatch的自相似性图像超分辨率算法
超分辨率
PatchMatch
模拟退火
自相似性
边缘相似度
图像块匹配
压缩感知和相似性约束的图像超分辨率重构算法
超分辨率
压缩感知
测量域字典分类
非局部相似
联合重构
基于非局部相似性的立体图像超分辨率技术
非局部相似性
超分辨率
立体图像
透视几何
虚拟视点
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于图像相似性和特征组合的超分辨图像重建
来源期刊 计算机辅助设计与图形学学报 学科 工学
关键词 超分辨率 细节增强 跨尺度相似性 奇异值分解
年,卷(期) 2019,(6) 所属期刊栏目 图像与视觉
研究方向 页码范围 1018-1029
页数 12页 分类号 TP391.41
字数 8327字 语种 中文
DOI 10.3724/SP.J.1089.2019.17395
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (40)
共引文献  (34)
参考文献  (17)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1981(1)
  • 参考文献(0)
  • 二级参考文献(1)
1989(1)
  • 参考文献(0)
  • 二级参考文献(1)
1991(2)
  • 参考文献(0)
  • 二级参考文献(2)
1996(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(1)
  • 参考文献(0)
  • 二级参考文献(1)
1999(1)
  • 参考文献(0)
  • 二级参考文献(1)
2000(1)
  • 参考文献(0)
  • 二级参考文献(1)
2001(3)
  • 参考文献(1)
  • 二级参考文献(2)
2002(4)
  • 参考文献(2)
  • 二级参考文献(2)
2003(3)
  • 参考文献(0)
  • 二级参考文献(3)
2004(6)
  • 参考文献(0)
  • 二级参考文献(6)
2005(1)
  • 参考文献(0)
  • 二级参考文献(1)
2006(2)
  • 参考文献(0)
  • 二级参考文献(2)
2007(3)
  • 参考文献(0)
  • 二级参考文献(3)
2008(3)
  • 参考文献(1)
  • 二级参考文献(2)
2009(4)
  • 参考文献(2)
  • 二级参考文献(2)
2010(2)
  • 参考文献(1)
  • 二级参考文献(1)
2011(5)
  • 参考文献(1)
  • 二级参考文献(4)
2012(1)
  • 参考文献(1)
  • 二级参考文献(0)
2013(5)
  • 参考文献(3)
  • 二级参考文献(2)
2015(2)
  • 参考文献(0)
  • 二级参考文献(2)
2016(4)
  • 参考文献(4)
  • 二级参考文献(0)
2018(1)
  • 参考文献(1)
  • 二级参考文献(0)
2019(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
超分辨率
细节增强
跨尺度相似性
奇异值分解
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机辅助设计与图形学学报
月刊
1003-9775
11-2925/TP
大16开
北京2704信箱
82-456
1989
chi
出版文献量(篇)
6095
总下载数(次)
15
总被引数(次)
94943
相关基金
国家自然科学基金
英文译名:the National Natural Science Foundation of China
官方网址:http://www.nsfc.gov.cn/
项目类型:青年科学基金项目(面上项目)
学科类型:数理科学
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导