作者:
基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
随着人们生活水平的提升,空调被大量使用,随之而来的是空调出现故障后需要花费大量的时间和精力来进行诊断和维修.而贝叶斯网络是一种基于概念推理的图形化网络,对于处理空调的故障诊断问题具有很大的优势.本文基于贝叶斯网络,采用贝叶斯公式进行推理,为空调故障诊断提供了一种省时省力的智能诊断系统,提升了空调系统故障诊断的效率和精度.
推荐文章
基于贝叶斯网络的故障诊断专家系统
汽车发动机:故障诊断
贝叶斯网络
因果有向图
基于贝叶斯网络模型的电子装备故障诊断研究
电子装备
故障诊断
贝叶斯网络
不确定性
基于分布式贝叶斯网络的多故障诊断方法研究
贝叶斯网络
分布式推理
多故障诊断
复杂系统
基于贝叶斯网络的航空发动机故障诊断研究
航空发动机
气路系统
贝叶斯网络
故障诊断
蒙特卡罗仿真
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于贝叶斯网络的智能空调故障诊断系统
来源期刊 中国设备工程 学科 工学
关键词 贝叶斯网络 空调故障 故障诊断
年,卷(期) 2019,(1) 所属期刊栏目 监测与诊断
研究方向 页码范围 92-93
页数 2页 分类号 TP18
字数 2097字 语种 中文
DOI 10.3969/j.issn.1671-0711.2019.01.045
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (50)
共引文献  (39)
参考文献  (8)
节点文献
引证文献  (1)
同被引文献  (2)
二级引证文献  (0)
1986(2)
  • 参考文献(0)
  • 二级参考文献(2)
1988(1)
  • 参考文献(0)
  • 二级参考文献(1)
1992(2)
  • 参考文献(0)
  • 二级参考文献(2)
1995(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(1)
  • 参考文献(0)
  • 二级参考文献(1)
1998(1)
  • 参考文献(0)
  • 二级参考文献(1)
2000(1)
  • 参考文献(0)
  • 二级参考文献(1)
2001(2)
  • 参考文献(0)
  • 二级参考文献(2)
2002(2)
  • 参考文献(1)
  • 二级参考文献(1)
2003(1)
  • 参考文献(0)
  • 二级参考文献(1)
2004(5)
  • 参考文献(1)
  • 二级参考文献(4)
2005(2)
  • 参考文献(0)
  • 二级参考文献(2)
2007(3)
  • 参考文献(0)
  • 二级参考文献(3)
2008(2)
  • 参考文献(0)
  • 二级参考文献(2)
2009(1)
  • 参考文献(0)
  • 二级参考文献(1)
2010(3)
  • 参考文献(0)
  • 二级参考文献(3)
2011(6)
  • 参考文献(0)
  • 二级参考文献(6)
2012(5)
  • 参考文献(0)
  • 二级参考文献(5)
2013(9)
  • 参考文献(1)
  • 二级参考文献(8)
2014(4)
  • 参考文献(2)
  • 二级参考文献(2)
2015(1)
  • 参考文献(0)
  • 二级参考文献(1)
2016(2)
  • 参考文献(2)
  • 二级参考文献(0)
2017(1)
  • 参考文献(1)
  • 二级参考文献(0)
2019(1)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(1)
  • 二级引证文献(0)
2019(1)
  • 引证文献(1)
  • 二级引证文献(0)
研究主题发展历程
节点文献
贝叶斯网络
空调故障
故障诊断
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
中国设备工程
半月刊
1671-0711
11-4623/N
大16开
北京市西城区月坛北小街2号院1号楼3层海运国际酒店二层
82-374
1985
chi
出版文献量(篇)
21366
总下载数(次)
45
总被引数(次)
19871
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导