基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
视频场景复杂多变,视频采集设备不一致等原因,导致无约束视频中充斥着大量的遮挡和人脸旋转,视频人脸识别方法的准确率不高且性能不稳定.为解决上述问题,本文提出了一种基于QPSO优化的流形学习的视频人脸识别算法.该算法将视频人脸识别视为图像集相似度度量问题,首先帧图像对齐后提取纹理特征并进行融合,再利用带有QPSO优化的黎曼流形大幅度简约维度以获得视频人脸的内在表示,相似度则由凸包距离表示,最后利用SVM分类器获得分类结果.通过在Youtube Face数据库和Honda/UCSD数据库上与当前主流算法进行的对比实验,验证了本文算法的有效性,所提算法识别精度较高,误差较低,并且对光照和表情变化具有较强的鲁棒性.
推荐文章
流形学习在三维人脸特征降维中的应用
三维人脸识别
特征降维
流形学习
基于核融合的多信息流形学习算法
核融合
流形学习
多信息
流形学习中的算法研究
流形学习
主流形
局部线性嵌套
等度规映射
变分法
互信息
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 一种基于QPSO优化的流形学习的视频人脸识别算法
来源期刊 自动化学报 学科
关键词 视频人脸识别 量子微粒群优化 黎曼流形学习 视频相似度
年,卷(期) 2020,(2) 所属期刊栏目 论文与报告
研究方向 页码范围 256-263
页数 8页 分类号
字数 6683字 语种 中文
DOI 10.16383/j.aas.c180359
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 赵宏伟 吉林大学计算机科学与技术学院 212 1233 19.0 27.0
5 王玉 吉林大学计算机科学与技术学院 58 178 6.0 12.0
14 刘宇琦 吉林大学计算机科学与技术学院 3 1 1.0 1.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (28)
共引文献  (7)
参考文献  (14)
节点文献
引证文献  (1)
同被引文献  (0)
二级引证文献  (0)
1987(1)
  • 参考文献(0)
  • 二级参考文献(1)
1993(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(2)
  • 参考文献(0)
  • 二级参考文献(2)
2000(3)
  • 参考文献(0)
  • 二级参考文献(3)
2002(1)
  • 参考文献(0)
  • 二级参考文献(1)
2003(2)
  • 参考文献(0)
  • 二级参考文献(2)
2005(1)
  • 参考文献(0)
  • 二级参考文献(1)
2006(1)
  • 参考文献(0)
  • 二级参考文献(1)
2007(4)
  • 参考文献(1)
  • 二级参考文献(3)
2008(3)
  • 参考文献(1)
  • 二级参考文献(2)
2009(2)
  • 参考文献(1)
  • 二级参考文献(1)
2010(3)
  • 参考文献(0)
  • 二级参考文献(3)
2011(1)
  • 参考文献(0)
  • 二级参考文献(1)
2012(4)
  • 参考文献(2)
  • 二级参考文献(2)
2013(2)
  • 参考文献(1)
  • 二级参考文献(1)
2014(5)
  • 参考文献(2)
  • 二级参考文献(3)
2015(1)
  • 参考文献(1)
  • 二级参考文献(0)
2016(1)
  • 参考文献(1)
  • 二级参考文献(0)
2017(3)
  • 参考文献(3)
  • 二级参考文献(0)
2018(1)
  • 参考文献(1)
  • 二级参考文献(0)
2020(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2019(1)
  • 引证文献(1)
  • 二级引证文献(0)
研究主题发展历程
节点文献
视频人脸识别
量子微粒群优化
黎曼流形学习
视频相似度
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
自动化学报
月刊
0254-4156
11-2109/TP
大16开
北京市海淀区中关村东路95号(北京2728信箱)
2-180
1963
chi
出版文献量(篇)
4124
总下载数(次)
26
总被引数(次)
120705
论文1v1指导