基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
针对传统最近邻数据关联算法正确率较低且容易出现漏关联的问题,提出一种多特征加权的最近邻关联算法.根据智能车环境感知系统获得的障碍物特征数据,定义了一种相似度函数,提出基于生命周期计算有效关联度的方法,从而判定目标是否关联;基于卡尔曼滤波对关联目标进行迭代更新,实现对目标的跟踪;通过实验对比了静止目标、无交互的低速运动目标和有交互的低速运动目标的跟踪轨迹.结果表明,与传统的最近邻数据关联算法相比,所提出的改进算法可以实现对低速运动目标准确连续的关联跟踪,不会出现目标丢失或位置突变的现象,且跟踪目标的交互与遮挡对跟踪效果影响较小,具有较高的有效性与实用性.研究结果可为智能车辆的目标跟踪设计提供参考.
推荐文章
基于指数加权卡尔曼滤波的组合定姿算法
卡尔曼滤波
指数加权
模糊逻辑
量测噪声
半物理仿真
基于无迹卡尔曼滤波的无人机跟踪算法
四基站定位
无迹卡尔曼滤波算法
跟踪预测
基于二级特征匹配的卡尔曼滤波跟踪算法
背景差分
目标检测
目标跟踪
卡尔曼滤波
二级特征匹配
基于相关和卡尔曼滤波的组合跟踪算法
高速红外目标
复杂背景
相关跟踪算法
卡尔曼滤波
组合跟踪
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于卡尔曼滤波的多特征加权最近邻数据关联与跟踪算法
来源期刊 河北科技大学学报 学科 工学
关键词 传感器技术 智能车辆 数据关联 目标跟踪 卡尔曼滤波 最近邻
年,卷(期) 2020,(3) 所属期刊栏目 机械、电子与信息科学
研究方向 页码范围 218-224
页数 7页 分类号 TN958.98
字数 5416字 语种 中文
DOI 10.7535/hbkd.2020yx03003
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 张明 南京理工大学机械工程学院 30 362 8.0 19.0
2 陈俊吉 南京理工大学机械工程学院 2 0 0.0 0.0
3 徐伟业 南京理工大学机械工程学院 1 0 0.0 0.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (127)
共引文献  (137)
参考文献  (16)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1946(1)
  • 参考文献(0)
  • 二级参考文献(1)
1951(1)
  • 参考文献(0)
  • 二级参考文献(1)
1960(1)
  • 参考文献(0)
  • 二级参考文献(1)
1970(1)
  • 参考文献(0)
  • 二级参考文献(1)
1975(1)
  • 参考文献(0)
  • 二级参考文献(1)
1979(1)
  • 参考文献(0)
  • 二级参考文献(1)
1988(2)
  • 参考文献(0)
  • 二级参考文献(2)
1991(1)
  • 参考文献(0)
  • 二级参考文献(1)
1994(1)
  • 参考文献(0)
  • 二级参考文献(1)
1996(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(3)
  • 参考文献(0)
  • 二级参考文献(3)
1998(2)
  • 参考文献(0)
  • 二级参考文献(2)
1999(2)
  • 参考文献(0)
  • 二级参考文献(2)
2001(4)
  • 参考文献(0)
  • 二级参考文献(4)
2002(4)
  • 参考文献(0)
  • 二级参考文献(4)
2003(7)
  • 参考文献(0)
  • 二级参考文献(7)
2004(4)
  • 参考文献(0)
  • 二级参考文献(4)
2005(6)
  • 参考文献(0)
  • 二级参考文献(6)
2006(10)
  • 参考文献(0)
  • 二级参考文献(10)
2007(7)
  • 参考文献(0)
  • 二级参考文献(7)
2008(11)
  • 参考文献(1)
  • 二级参考文献(10)
2009(7)
  • 参考文献(0)
  • 二级参考文献(7)
2010(7)
  • 参考文献(1)
  • 二级参考文献(6)
2011(10)
  • 参考文献(0)
  • 二级参考文献(10)
2012(7)
  • 参考文献(1)
  • 二级参考文献(6)
2013(6)
  • 参考文献(0)
  • 二级参考文献(6)
2014(7)
  • 参考文献(2)
  • 二级参考文献(5)
2015(5)
  • 参考文献(1)
  • 二级参考文献(4)
2016(9)
  • 参考文献(1)
  • 二级参考文献(8)
2017(3)
  • 参考文献(1)
  • 二级参考文献(2)
2018(4)
  • 参考文献(1)
  • 二级参考文献(3)
2019(7)
  • 参考文献(7)
  • 二级参考文献(0)
2020(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
传感器技术
智能车辆
数据关联
目标跟踪
卡尔曼滤波
最近邻
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
河北科技大学学报
双月刊
1008-1542
13-1225/TS
大16开
河北省石家庄市裕华东路70号
1980
chi
出版文献量(篇)
2212
总下载数(次)
6
总被引数(次)
14739
相关基金
国家自然科学基金
英文译名:the National Natural Science Foundation of China
官方网址:http://www.nsfc.gov.cn/
项目类型:青年科学基金项目(面上项目)
学科类型:数理科学
论文1v1指导