原文服务方: 西安交通大学学报       
摘要:
针对目标跟踪迭代无味卡尔曼滤波(IUKF)算法中跟踪精度较差的问题,提出一种基于状态扩展技术的改进迭代无味卡尔曼滤波(IIUKF)算法.新算法首先将观测噪声扩展进状态,构造关于扩展状态的零噪声观测方程,然后在观测迭代过程中将最新的扩展状态后验估计代入更新公式,进行观测迭代更新.相比IUKF算法,IIUKF算法不仅形式上更为简洁,而且避免了IUKF算法中先验估计和观测噪声非统计正交的问题,滤波精度更高.数值仿真表明,IIUKF算法的跟踪误差比IUKF算法减小了20%以上.
推荐文章
扩展卡尔曼滤波的目标跟踪优化算法
扩展卡尔曼滤波
目标跟踪
多普勒量测
跟踪精度
无味卡尔曼滤波算法形式及性能研究
无味卡尔曼滤波
状态扩展
重采样
多目标跟踪的改进Camshift/卡尔曼滤波组合算法
多目标跟踪
Camshift算法
卡尔曼滤波
用于弹道目标跟踪的有限差分扩展卡尔曼滤波算法
弹道目标跟踪
扩展卡尔曼滤波
无味卡尔曼滤波
有限差分
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 迭代无味卡尔曼滤波的目标跟踪算法
来源期刊 西安交通大学学报 学科
关键词 送代扩展卡尔曼滤波 迭代无味卡尔曼滤波 统计正交 目标跟踪
年,卷(期) 2011,(12) 所属期刊栏目
研究方向 页码范围 70-74
页数 分类号 TN911.72
字数 语种 中文
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 李安 海军工程大学电气与信息工程学院 64 422 11.0 16.0
2 许江宁 海军工程大学电气与信息工程学院 152 1230 16.0 25.0
3 常路宾 海军工程大学电气与信息工程学院 13 51 4.0 6.0
4 常国宾 海军工程大学电气与信息工程学院 9 60 5.0 7.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (30)
共引文献  (40)
参考文献  (8)
节点文献
引证文献  (8)
同被引文献  (29)
二级引证文献  (18)
1985(2)
  • 参考文献(0)
  • 二级参考文献(2)
1991(1)
  • 参考文献(0)
  • 二级参考文献(1)
1993(4)
  • 参考文献(1)
  • 二级参考文献(3)
1998(1)
  • 参考文献(0)
  • 二级参考文献(1)
2000(3)
  • 参考文献(0)
  • 二级参考文献(3)
2001(1)
  • 参考文献(0)
  • 二级参考文献(1)
2002(2)
  • 参考文献(0)
  • 二级参考文献(2)
2003(1)
  • 参考文献(0)
  • 二级参考文献(1)
2004(3)
  • 参考文献(1)
  • 二级参考文献(2)
2005(5)
  • 参考文献(1)
  • 二级参考文献(4)
2007(8)
  • 参考文献(2)
  • 二级参考文献(6)
2008(2)
  • 参考文献(0)
  • 二级参考文献(2)
2009(2)
  • 参考文献(0)
  • 二级参考文献(2)
2010(2)
  • 参考文献(2)
  • 二级参考文献(0)
2011(1)
  • 参考文献(1)
  • 二级参考文献(0)
2011(1)
  • 参考文献(1)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2013(1)
  • 引证文献(1)
  • 二级引证文献(0)
2014(5)
  • 引证文献(3)
  • 二级引证文献(2)
2015(1)
  • 引证文献(1)
  • 二级引证文献(0)
2016(2)
  • 引证文献(0)
  • 二级引证文献(2)
2017(1)
  • 引证文献(1)
  • 二级引证文献(0)
2018(6)
  • 引证文献(1)
  • 二级引证文献(5)
2019(9)
  • 引证文献(1)
  • 二级引证文献(8)
2020(1)
  • 引证文献(0)
  • 二级引证文献(1)
研究主题发展历程
节点文献
送代扩展卡尔曼滤波
迭代无味卡尔曼滤波
统计正交
目标跟踪
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
西安交通大学学报
月刊
0253-987X
61-1069/T
大16开
1960-01-01
chi
出版文献量(篇)
7020
总下载数(次)
0
论文1v1指导