基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
In-hand manipulation is a fundamental ability for multi-fingered robotic hands that interact with their environments.Owing to the high dimensionality of robotic hands and intermittent contact dynamics,effectively programming a robotic hand for in-hand manipulations is still a challenging problem.To address this challenge,this work employs deep reinforcement learning(DRL)algorithm to learn in-hand manipulations for multi-fingered robotic hands.A reward-shaping method is proposed to assist the learning of in-hand manipulation.The synergy of robotic hand postures is analysed to build a low-dimensional hand posture space.Two additional rewards are designed based on both the analysis of hand synergies and its learning history.The two additional rewards cooperating with an extrinsic reward are used to assist the in-hand manipulation learning.Three value functions are trained jointly with respect to their reward functions.Then they cooperate to optimise a control policy for in-hand manipulation.The reward shaping not only improves the exploration efficiency of the DRL algorithm but also provides a way to incorporate domain knowledge.The performance of the proposed learning method is evaluated with object rotation tasks.Experimental results demonstrated that the proposed learning method enables multi-fingered robotic hands to learn in-hand manipulation effectively.
推荐文章
Spatial prediction of landslide susceptibility using GIS-based statistical and machine learning mode
Landslide susceptibility mapping
Statistical model
Machine learning model
Four cases
气动机器人多指灵巧手——ZJUT Hand
气动柔性驱动器(FPA)
弯曲关节
侧摆关节
力/位传感系统
机器人多指灵巧手
Eye-to-Hand机器人系统的平面工件识别研究
手眼视觉定位
轮廓识别
颜色空间
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 Learning synergies based in-hand manipulation with reward shaping
来源期刊 智能技术学报 学科 工学
关键词 MANIPULATION POLICY jointly
年,卷(期) 2020,(3) 所属期刊栏目
研究方向 页码范围 141-149
页数 9页 分类号 TP2
字数 语种
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2020(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
MANIPULATION
POLICY
jointly
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
智能技术学报
季刊
2468-2322
重庆市巴南区红光大道69号
出版文献量(篇)
142
总下载数(次)
4
论文1v1指导