作者:
基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
深度学习是当下热门的机器学习研究方向,在工业上有着重要用途,在学术领域有着重要研究价值.文章介绍了深度学习架构,从随机梯度下降法和Adam算法两个方面分析优化算法,探讨Sigmoid函数和Softmax函数,并论述深度学习研究展望.
推荐文章
情境学习理论文献综述
情境学习理论
合法的边缘性参与
实践共同体
深度学习相关研究综述
深度学习
神经网络
算法模型
软件工具
硬件加速
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 深度学习理论综述与研究展望
来源期刊 网络安全技术与应用 学科
关键词 深度学习 神经网络 优化算法 激活函数
年,卷(期) 2020,(4) 所属期刊栏目 安全模型、算法与编程
研究方向 页码范围 43-44
页数 2页 分类号
字数 3481字 语种 中文
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 张沛阳 西南大学电子信息工程学院 3 1 1.0 1.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (97)
共引文献  (275)
参考文献  (8)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1958(1)
  • 参考文献(0)
  • 二级参考文献(1)
1962(1)
  • 参考文献(0)
  • 二级参考文献(1)
1965(1)
  • 参考文献(0)
  • 二级参考文献(1)
1982(1)
  • 参考文献(0)
  • 二级参考文献(1)
1983(1)
  • 参考文献(0)
  • 二级参考文献(1)
1986(3)
  • 参考文献(0)
  • 二级参考文献(3)
1988(1)
  • 参考文献(0)
  • 二级参考文献(1)
1989(1)
  • 参考文献(0)
  • 二级参考文献(1)
1991(1)
  • 参考文献(0)
  • 二级参考文献(1)
1992(1)
  • 参考文献(0)
  • 二级参考文献(1)
1994(1)
  • 参考文献(0)
  • 二级参考文献(1)
1995(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(1)
  • 参考文献(0)
  • 二级参考文献(1)
1998(5)
  • 参考文献(0)
  • 二级参考文献(5)
2001(1)
  • 参考文献(0)
  • 二级参考文献(1)
2002(3)
  • 参考文献(0)
  • 二级参考文献(3)
2003(1)
  • 参考文献(0)
  • 二级参考文献(1)
2004(1)
  • 参考文献(0)
  • 二级参考文献(1)
2005(3)
  • 参考文献(0)
  • 二级参考文献(3)
2006(7)
  • 参考文献(1)
  • 二级参考文献(6)
2007(1)
  • 参考文献(0)
  • 二级参考文献(1)
2009(3)
  • 参考文献(1)
  • 二级参考文献(2)
2010(4)
  • 参考文献(0)
  • 二级参考文献(4)
2012(3)
  • 参考文献(0)
  • 二级参考文献(3)
2013(5)
  • 参考文献(0)
  • 二级参考文献(5)
2014(5)
  • 参考文献(0)
  • 二级参考文献(5)
2015(11)
  • 参考文献(3)
  • 二级参考文献(8)
2016(10)
  • 参考文献(1)
  • 二级参考文献(9)
2017(7)
  • 参考文献(1)
  • 二级参考文献(6)
2018(15)
  • 参考文献(0)
  • 二级参考文献(15)
2019(5)
  • 参考文献(1)
  • 二级参考文献(4)
2020(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
深度学习
神经网络
优化算法
激活函数
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
网络安全技术与应用
月刊
1009-6833
11-4522/TP
大16开
北京市
2-741
2001
chi
出版文献量(篇)
13340
总下载数(次)
61
总被引数(次)
33730
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导