基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
月球车是搭载探测任务的可移动多功能机器人.月球车在实际地形行驶中,从起点到目标点之间除了选择最优路径,还应该将地形、障碍物等影响因素考虑进去.地形的主要影响因素是陡坡方向和陡坡坡度,其他因素归类为滑移,这些在很大程度上增加了路径规划的长度和时间复杂度,更影响了其安全性.而传统蚁群算法只是单纯地寻求路径规划中的最优解,存在收敛速度慢、时间复杂度高、寻优能力不平衡等问题,且没有考虑滑移、地形等因素,应用在月球车预测路径规划问题中极易陷入局部最优解.提出了基于三维栅格地形环境下融合坡度、坡向的滑移预测改进蚁群算法路径规划;通过设置相同的信息素启发因子和信息素挥发系数,改变滑移预测地形参数,得到了基于滑移预测的综合代价函数,改进了传统蚁群算法;分析了基于滑移预测的综合代价函数对改进蚁群算法路径长度、收敛速度、时间复杂度和迭代次数的影响.最后利用实验仿真数据结果验证了本文改进后的蚁群算法在滑移预测路径规划问题中有更高的有效性.
推荐文章
基于蚁群算法的路径规划改进方法研究
蚁群算法
路径规划
改进方法
基于改进蚁群算法的旅游景区路径规划
蚁群算法
旅游景区
路径规划
负载均衡
基于改进型蚁群算法的AUV路径规划
路径规划
蚁群算法
再励学习
Dijkstra算法
信息素更新
自治水下机器人
基于蚁群算法的机器人路径规划
机器人路径规划
蚁群算法
全局路径规划
局部避碰策略
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于蚁群算法的滑移预测路径规划研究
来源期刊 华东师范大学学报(自然科学版) 学科 工学
关键词 地形坡度 路径规划 蚁群算法 综合代价函数
年,卷(期) 2020,(4) 所属期刊栏目 计算机科学
研究方向 页码范围 72-78
页数 7页 分类号 TP391.9
字数 3847字 语种 中文
DOI 10.3969/j.issn.1000-5641.201921010
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 周兰凤 上海应用技术大学计算机科学与信息工程学院 17 46 5.0 5.0
2 杨丽娜 上海应用技术大学计算机科学与信息工程学院 3 0 0.0 0.0
3 方华 上海应用技术大学计算机科学与信息工程学院 3 0 0.0 0.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (52)
共引文献  (105)
参考文献  (7)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1998(1)
  • 参考文献(0)
  • 二级参考文献(1)
1999(1)
  • 参考文献(0)
  • 二级参考文献(1)
2000(1)
  • 参考文献(0)
  • 二级参考文献(1)
2002(2)
  • 参考文献(0)
  • 二级参考文献(2)
2003(1)
  • 参考文献(0)
  • 二级参考文献(1)
2004(4)
  • 参考文献(0)
  • 二级参考文献(4)
2005(1)
  • 参考文献(1)
  • 二级参考文献(0)
2006(2)
  • 参考文献(0)
  • 二级参考文献(2)
2007(3)
  • 参考文献(0)
  • 二级参考文献(3)
2008(3)
  • 参考文献(0)
  • 二级参考文献(3)
2009(5)
  • 参考文献(0)
  • 二级参考文献(5)
2010(1)
  • 参考文献(0)
  • 二级参考文献(1)
2011(10)
  • 参考文献(1)
  • 二级参考文献(9)
2012(8)
  • 参考文献(2)
  • 二级参考文献(6)
2013(4)
  • 参考文献(0)
  • 二级参考文献(4)
2014(3)
  • 参考文献(1)
  • 二级参考文献(2)
2015(2)
  • 参考文献(0)
  • 二级参考文献(2)
2016(6)
  • 参考文献(1)
  • 二级参考文献(5)
2017(1)
  • 参考文献(1)
  • 二级参考文献(0)
2020(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
地形坡度
路径规划
蚁群算法
综合代价函数
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
华东师范大学学报(自然科学版)
双月刊
1000-5641
31-1298/N
16开
上海市中山北路3663号
4-359
1955
chi
出版文献量(篇)
2430
总下载数(次)
5
总被引数(次)
17499
相关基金
国家自然科学基金
英文译名:the National Natural Science Foundation of China
官方网址:http://www.nsfc.gov.cn/
项目类型:青年科学基金项目(面上项目)
学科类型:数理科学
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导