基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
为提高短时交通流预测的精度,提出利用BP神经网络、RBF神经网络和ARIMA模型构建组合预测模型,该组合预测模型利用最优化原理进行权系数的分配,并且满足分配到的权值始终具有实际意义.通过对分配的权系数进行显著性检验,以确保组合预测模型中选用的单项预测方法显著相关.通过实例分析,验证了组合预测模型的有效性,结果表明,相比较单一的预测模型,组合预测模型具有更高的预测精度.
推荐文章
一种LS-SVM在线式短时交通流预测方法
短时交通流预测
统计学习
最小二乘支持向量机
在线式学习算法
滑动时间窗口
基于卷积神经网络与双向长短时记忆网络组合模型的短时交通流预测
智能交通
短时交通流预测
深度学习
CNN
BiLSTM
基于深度学习的短时交通流预测
交通流预测
深度学习
短时交通流
支持向量回归
利用模糊时间序列进行短时交通流预测
短时交通流预测
模糊时间序列
时变模糊时间序列
时不变模糊时间序列
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 一种短时交通流组合预测模型
来源期刊 交通科技 学科 交通运输
关键词 短时交通流 组合预测 神经网络 时间序列
年,卷(期) 2020,(1) 所属期刊栏目 交通工程
研究方向 页码范围 97-101
页数 5页 分类号 U491
字数 3752字 语种 中文
DOI 10.3963/j.issn.1671-7570.2020.01.021
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 罗中萍 1 0 0.0 0.0
2 宁丹 1 0 0.0 0.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (93)
共引文献  (210)
参考文献  (16)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1984(1)
  • 参考文献(0)
  • 二级参考文献(1)
1987(1)
  • 参考文献(0)
  • 二级参考文献(1)
1991(1)
  • 参考文献(0)
  • 二级参考文献(1)
1993(1)
  • 参考文献(0)
  • 二级参考文献(1)
1994(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(2)
  • 参考文献(0)
  • 二级参考文献(2)
1998(2)
  • 参考文献(1)
  • 二级参考文献(1)
1999(2)
  • 参考文献(0)
  • 二级参考文献(2)
2000(6)
  • 参考文献(0)
  • 二级参考文献(6)
2001(3)
  • 参考文献(0)
  • 二级参考文献(3)
2002(20)
  • 参考文献(1)
  • 二级参考文献(19)
2003(23)
  • 参考文献(1)
  • 二级参考文献(22)
2004(8)
  • 参考文献(2)
  • 二级参考文献(6)
2005(3)
  • 参考文献(0)
  • 二级参考文献(3)
2006(10)
  • 参考文献(1)
  • 二级参考文献(9)
2007(5)
  • 参考文献(2)
  • 二级参考文献(3)
2008(2)
  • 参考文献(1)
  • 二级参考文献(1)
2009(5)
  • 参考文献(3)
  • 二级参考文献(2)
2010(3)
  • 参考文献(1)
  • 二级参考文献(2)
2011(2)
  • 参考文献(0)
  • 二级参考文献(2)
2012(1)
  • 参考文献(0)
  • 二级参考文献(1)
2013(1)
  • 参考文献(1)
  • 二级参考文献(0)
2014(2)
  • 参考文献(0)
  • 二级参考文献(2)
2015(1)
  • 参考文献(1)
  • 二级参考文献(0)
2018(1)
  • 参考文献(0)
  • 二级参考文献(1)
2019(2)
  • 参考文献(1)
  • 二级参考文献(1)
2020(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
短时交通流
组合预测
神经网络
时间序列
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
交通科技
双月刊
1671-7570
42-1611/U
大16开
武汉市武昌和平大道1178号
38-77
1975
chi
出版文献量(篇)
5827
总下载数(次)
7
总被引数(次)
20524
论文1v1指导