基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
为了自适应地调整滤波样本,本文提出了一种基于Kullback?Leibler散度(Kullback?Leible divergence,KLD)?抽样的改进高斯粒子滤波算法(Gaussian particle filter algorithm based on KLD,KLGPF).在采样过程中,算法通过计算KLD来调整粒子集的大小,使其介于粒子的离散概率密度函数和真实的后验概率密度函数之间.当噪声服从高斯分布,且噪声的统计特性发生突变时,KLGPF具有显著的效果,仿真结果表明,KLGPF在噪声统计量突变时仍能保持良好的估计效果.在相同条件下,KLGPF的运算速度相比基于KLD采样的粒子滤波算法(Particle filter algorithm based on KLD,KLPF)的运算速度提高了28%.
推荐文章
基于重采样技术改进的粒子滤波算法
粒子滤波
重采样
粒子多样性
粒子枯竭
基于正则化的高斯粒子滤波算法
高斯粒子滤波
正则化粒子滤波
概率分布
粒子退化
基于容积卡尔曼滤波的高斯粒子滤波算法
高斯粒子滤波
重要性密度函数
实时性
容积卡尔曼滤波
一种改进重采样的粒子滤波算法
局部重采样
Thompson-Taylor算法
粒子滤波
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于KLD采样改进的高斯粒子滤波算法
来源期刊 南京航空航天大学学报(英文版) 学科 工学
关键词 粒子滤波 高斯粒子滤波 KLD采样 噪声突变 自适应粒子数
年,卷(期) 2020,(4) 所属期刊栏目
研究方向 页码范围 607-614
页数 8页 分类号 TP274
字数 1350字 语种 英文
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 周翟和 南京航空航天大学自动化学院 36 309 10.0 16.0
2 曾庆喜 南京航空航天大学自动化学院 29 133 7.0 10.0
3 钟雨露 南京航空航天大学自动化学院 2 0 0.0 0.0
4 田祥瑞 南京航空航天大学自动化学院 4 0 0.0 0.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (6)
共引文献  (1)
参考文献  (11)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1991(1)
  • 参考文献(0)
  • 二级参考文献(1)
1998(1)
  • 参考文献(0)
  • 二级参考文献(1)
2003(1)
  • 参考文献(1)
  • 二级参考文献(0)
2004(1)
  • 参考文献(1)
  • 二级参考文献(0)
2006(1)
  • 参考文献(0)
  • 二级参考文献(1)
2007(1)
  • 参考文献(0)
  • 二级参考文献(1)
2008(1)
  • 参考文献(1)
  • 二级参考文献(0)
2009(1)
  • 参考文献(1)
  • 二级参考文献(0)
2011(1)
  • 参考文献(0)
  • 二级参考文献(1)
2012(1)
  • 参考文献(0)
  • 二级参考文献(1)
2013(2)
  • 参考文献(2)
  • 二级参考文献(0)
2015(1)
  • 参考文献(1)
  • 二级参考文献(0)
2017(3)
  • 参考文献(3)
  • 二级参考文献(0)
2018(1)
  • 参考文献(1)
  • 二级参考文献(0)
2020(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
粒子滤波
高斯粒子滤波
KLD采样
噪声突变
自适应粒子数
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
南京航空航天大学学报(英文版)
双月刊
1005-1120
32-1389/V
大16开
南京市御道街29号1016信箱
1982
eng
出版文献量(篇)
1548
总下载数(次)
1
总被引数(次)
4543
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导