基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
轨道交通在我国综合交通运输体系中占有重要的地位,随着人工智能的发展,智能感知轨道交通周围环境的信息也变得越来越引人注目.本文结合深度学习与图像处理的方法,设计并实现了一种基于卷积神经网络的高铁轨道周边路牌数字识别的智能系统,该系统通过在高铁驾驶室内安装摄像头的方式采集运行前方的视频,并通过目标识别、语义分割等深度学习算法自动定位并识别路牌内的数字,从而解决了之前人工处理的繁琐和低效率.本算法整体系统由三个子模块构成,分别为目标检测模块、语义分割模块以及数字识别模块,其中目标检测模块基于SSD (Single shot MultiBox dector)模型,并对其进行了改进,使其更适用于轨道交通中的小目标识别;语义分割模块使用了全卷积的方式,对目标检测的结果进一步处理,准确得到路牌中的数字区域;数字识别模块的设计参考了著名的识别MNIST数据集的手写体识别系统,并针对路牌中数字的特点做了相应的改进,实现了对每个数字的准确识别.实验结果表明,本系统可适应白天、夜间情况下轨道交通的路况,识别的综合准确率为80.45%,其中,白天的平均识别准确率为87.98%,夜间的平均识别准确率为72.92%.
推荐文章
基于卷积神经网络的未知协议识别方法
深度学习
机器学习
卷积神经网络
未知协议识别
基于卷积神经网络的交通声音事件识别方法
Gammatone滤波器
卷积神经网络
音频事件识别
公路交通环境
声音数字信号
子带滤波
基于卷积神经网络的ECG信号识别方法
ECG信号识别
短时傅里叶变换
卷积神经网络
支持向量机
基于代价敏感卷积神经网络的人脸年龄识别方法
卷积神经网路
人脸年龄识别
误分类代价
代价敏感性
期望类最大原则
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于卷积神经网络的铁轨路牌识别方法
来源期刊 自动化学报 学科
关键词 智能轨道交通 高铁路牌识别 深度学习 图像处理 目标检测
年,卷(期) 2020,(3) 所属期刊栏目 论文与报告
研究方向 页码范围 518-530
页数 13页 分类号
字数 6427字 语种 中文
DOI 10.16383/j.aas.c190182
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 孟琭 东北大学信息科学与工程学院 22 171 8.0 13.0
2 李楠 12 31 4.0 5.0
3 孙霄宇 东北大学信息科学与工程学院 1 0 0.0 0.0
4 赵滨 1 0 0.0 0.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (4)
共引文献  (1)
参考文献  (7)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2000(1)
  • 参考文献(0)
  • 二级参考文献(1)
2002(1)
  • 参考文献(0)
  • 二级参考文献(1)
2008(1)
  • 参考文献(0)
  • 二级参考文献(1)
2010(1)
  • 参考文献(1)
  • 二级参考文献(0)
2013(1)
  • 参考文献(1)
  • 二级参考文献(0)
2015(1)
  • 参考文献(1)
  • 二级参考文献(0)
2017(2)
  • 参考文献(2)
  • 二级参考文献(0)
2018(2)
  • 参考文献(1)
  • 二级参考文献(1)
2019(1)
  • 参考文献(1)
  • 二级参考文献(0)
2020(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
智能轨道交通
高铁路牌识别
深度学习
图像处理
目标检测
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
自动化学报
月刊
0254-4156
11-2109/TP
大16开
北京市海淀区中关村东路95号(北京2728信箱)
2-180
1963
chi
出版文献量(篇)
4124
总下载数(次)
26
总被引数(次)
120705
论文1v1指导