基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
目的 为提取可充分表达图像语义信息的图像特征,减少哈希检索中的投影误差,并生成更紧致的二值哈希码,提出一种基于密集网络和改进的监督核哈希方法.方法 用训练优化好的密集网络提取图像的高层语义特征;先对提取到的图像特征进行核主成分分析投影,充分挖掘图像特征中隐含的非线性信息,以减少投影误差,再利用监督核哈希方法对图像特征进行监督学习,将特征映射到汉明空间,生成更紧致的二值哈希码.结果 为验证提出方法的有效性、可拓展性以及高效性,在Paris6K和LUNA16(lung nodule analysis 16)数据集上与其他6种常用哈希方法相比,所提方法在不同哈希码长下的平均检索精度均较高,且在哈希码长为64 bit时,平均检索精度达到最高,分别为89.2%和92.9%;与基于卷积神经网络的哈希算法(convolution neural network Hashing,CNNH)方法相比,所提方法的时间复杂度有所降低.结论 提出一种基于密集网络和改进的监督核哈希方法,提高了图像特征的表达能力和投影精度,具有较好的检索性能和较低的时间复杂度;且所提方法的可拓展性也较好,不仅能够有效应用到彩色图像检索领域,也可以应用在医学灰度图像检索领域.
推荐文章
结合卷积神经网络与哈希编码的图像检索方法
图像检索
卷积神经网络
哈希编码
网络模型
图片对生成
网络训练
基于哈希技术的BoV W图像检索
二进制哈希码
视觉词袋模型
二进制视觉词典
图像检索
基于PCA的哈希图像检索算法
哈希
图像检索
主成分分析
流形学习
基于无监督哈希算法的车辆图像快速检索
无监督哈希
三元组
卷积神经网络
车辆图像
快速检索
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 密集网络图像哈希检索
来源期刊 中国图象图形学报 学科 工学
关键词 密集卷积网络(DenseNet) 监督核哈希 图像特征 投影误差 核主成分分析
年,卷(期) 2020,(5) 所属期刊栏目 图像处理和编码
研究方向 页码范围 900-912
页数 13页 分类号 TP391
字数 8775字 语种 中文
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 李博 天津医科大学医学影像学院 33 67 5.0 6.0
2 郭军 天津医科大学医学影像学院 13 69 4.0 8.0
3 康晓东 天津医科大学医学影像学院 51 215 9.0 12.0
4 王亚鸽 天津医科大学医学影像学院 9 6 2.0 2.0
5 张华丽 天津医科大学医学影像学院 7 0 0.0 0.0
6 刘汉卿 天津医科大学医学影像学院 2 0 0.0 0.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (20)
共引文献  (28)
参考文献  (12)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1933(1)
  • 参考文献(1)
  • 二级参考文献(0)
1952(1)
  • 参考文献(0)
  • 二级参考文献(1)
1961(1)
  • 参考文献(0)
  • 二级参考文献(1)
2004(1)
  • 参考文献(1)
  • 二级参考文献(0)
2008(1)
  • 参考文献(0)
  • 二级参考文献(1)
2009(3)
  • 参考文献(1)
  • 二级参考文献(2)
2011(3)
  • 参考文献(1)
  • 二级参考文献(2)
2012(4)
  • 参考文献(1)
  • 二级参考文献(3)
2013(4)
  • 参考文献(1)
  • 二级参考文献(3)
2014(3)
  • 参考文献(0)
  • 二级参考文献(3)
2015(3)
  • 参考文献(2)
  • 二级参考文献(1)
2016(3)
  • 参考文献(1)
  • 二级参考文献(2)
2017(1)
  • 参考文献(1)
  • 二级参考文献(0)
2018(2)
  • 参考文献(1)
  • 二级参考文献(1)
2019(1)
  • 参考文献(1)
  • 二级参考文献(0)
2020(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
密集卷积网络(DenseNet)
监督核哈希
图像特征
投影误差
核主成分分析
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
中国图象图形学报
月刊
1006-8961
11-3758/TB
大16开
北京9718信箱
82-831
1996
chi
出版文献量(篇)
5906
总下载数(次)
17
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导