基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
Urban traffic congestion is a severe and widely studied problem over the decade because of the negative impacts. However, in recent years some approaches emerge as proper and suitable solutions. The Carpooling initiative is one of the most representative efforts to propitiate a responsible use of particular vehicles. Thus, the paper introduces a carpooling model considering the users’ preference to reach an appropriate match among drivers and passengers. In particular, the paper conducts a study of 6 of the most avid classified techniques in machine learning to create a model for the selection of travel companions. The experimental results show the models’ precision and assess the best cases using Friedman’s test. Finally, the conclusions emphasize the relevance of the proposed study and suggest that it is necessary to extend the proposal with more drives and passengers’ data.
推荐文章
Spatial prediction of landslide susceptibility using GIS-based statistical and machine learning mode
Landslide susceptibility mapping
Statistical model
Machine learning model
Four cases
基于情感计算的E-Learning模型框架
情感计算
E-Learning
和谐人机环境
Blended Learning在教师教育中的应用探析
Blended Learning
教师教育
校本培训
反思
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 A Comparison of Machine Learning Techniques in the Carpooling Problem
来源期刊 电脑和通信(英文) 学科 工学
关键词 Carpooling Machine Learning Techniques Vehicle Traffic Congestion
年,卷(期) 2020,(12) 所属期刊栏目
研究方向 页码范围 159-169
页数 11页 分类号 TN9
字数 语种
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2020(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
Carpooling
Machine
Learning
Techniques
Vehicle
Traffic
Congestion
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
电脑和通信(英文)
月刊
2327-5219
武汉市江夏区汤逊湖北路38号光谷总部空间
出版文献量(篇)
783
总下载数(次)
0
总被引数(次)
0
论文1v1指导