基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
智能仓储的优化一般分为货架优化和路径优化两部分:货架优化针对货物与货架两者的关系,对货物摆放位置进行优化;而路径优化主要寻找自动引导小车(automated guided vehicle,简称AGV)的最优路径.目前,大多的智能仓储优化仅对这两部分进行独立研究.在实际仓储应用中,只能以线性叠加的方式解决问题,导致问题的求解易陷入局部最优中.通过对智能仓储环节中各部分的关系进行耦合分析,提出了货位和AGV路径协同优化数学模型,将货架优化和路径规划归为一个整体;此外,提出了智能仓储协同优化框架的求解算法,包括货品相似度求解算法和改进的路径规划算法;并在以上两种算法的基础上,使用改进的遗传算法实现了货位路径协同优化.实验结果验证了所提出的智能仓储协同优化算法的有效性和稳定性.通过使用该算法,可有效提高仓储的出货效率,降低运输成本.
推荐文章
基于多智能体强化学习的多AGV路径规划方法
多智能体强化学习
AGV路径规划
独立强化学习
多AGV定位和路径规划方法研究
AGV
定位
时间窗
路径规划
仓储物流机器人集群避障及协同路径规划方法
智能仓储
机器人集群
交通规则
预约表
改进Q-Learning算法
协同路径规划
一种基于遗传算法的AGV路径规划方法
AGV
遗传算法
路径规划
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 智能仓储货位规划与AGV路径规划协同优化算法
来源期刊 软件学报 学科 工学
关键词 智能仓储 货位规划 AGV路径规划 协同优化 遗传算法
年,卷(期) 2020,(9) 所属期刊栏目 智能嵌入式系统专题
研究方向 页码范围 2770-2784
页数 15页 分类号 TP18
字数 语种 中文
DOI 10.13328/j.cnki.jos.005944
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 李青山 39 244 9.0 14.0
2 王亮 11 42 4.0 6.0
3 蔺一帅 1 0 0.0 0.0
4 陆鹏浩 1 0 0.0 0.0
5 孙雨楠 1 0 0.0 0.0
6 王颖芝 1 0 0.0 0.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (68)
共引文献  (49)
参考文献  (20)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1990(1)
  • 参考文献(1)
  • 二级参考文献(0)
1995(2)
  • 参考文献(1)
  • 二级参考文献(1)
1998(1)
  • 参考文献(0)
  • 二级参考文献(1)
2000(1)
  • 参考文献(0)
  • 二级参考文献(1)
2001(3)
  • 参考文献(0)
  • 二级参考文献(3)
2002(1)
  • 参考文献(0)
  • 二级参考文献(1)
2003(1)
  • 参考文献(0)
  • 二级参考文献(1)
2004(3)
  • 参考文献(0)
  • 二级参考文献(3)
2005(1)
  • 参考文献(0)
  • 二级参考文献(1)
2006(2)
  • 参考文献(0)
  • 二级参考文献(2)
2007(2)
  • 参考文献(0)
  • 二级参考文献(2)
2008(6)
  • 参考文献(0)
  • 二级参考文献(6)
2009(4)
  • 参考文献(1)
  • 二级参考文献(3)
2010(5)
  • 参考文献(1)
  • 二级参考文献(4)
2011(7)
  • 参考文献(1)
  • 二级参考文献(6)
2012(6)
  • 参考文献(0)
  • 二级参考文献(6)
2013(10)
  • 参考文献(2)
  • 二级参考文献(8)
2014(7)
  • 参考文献(1)
  • 二级参考文献(6)
2015(7)
  • 参考文献(1)
  • 二级参考文献(6)
2016(1)
  • 参考文献(0)
  • 二级参考文献(1)
2017(11)
  • 参考文献(5)
  • 二级参考文献(6)
2018(5)
  • 参考文献(5)
  • 二级参考文献(0)
2019(1)
  • 参考文献(1)
  • 二级参考文献(0)
2020(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
智能仓储
货位规划
AGV路径规划
协同优化
遗传算法
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
软件学报
月刊
1000-9825
11-2560/TP
16开
北京8718信箱
82-367
1990
chi
出版文献量(篇)
5820
总下载数(次)
36
论文1v1指导