基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
随着深度学习的快速发展,生成式模型领域也取得了显著进展.生成对抗网络(Generative adversarial network,GAN)是一种无监督的学习方法,它是根据博弈论中的二人零和博弈理论提出的.GAN具有一个生成器网络和一个判别器网络,并通过对抗学习进行训练.近年来,GAN成为一个炙手可热的研究方向.GAN不仅在图像领域取得了不错的成绩,还在自然语言处理(Natural language processing,NLP)以及其他领域崭露头角.本文对GAN的基本原理、训练过程和传统GAN存在的问题进行了阐述,进一步详细介绍了通过损失函数的修改、网络结构的变化以及两者结合的手段提出的GAN变种模型的原理结构,其中包括:条件生成对抗网络(Conditional GAN,CGAN)、基于Wasserstein距离的生成对抗网络(Wasserstein-GAN,WGAN)及其基于梯度策略的WGAN(WGAN-gradient penalty,WGAN-GP)、基于互信息理论的生成对抗网络(Informational-GAN,InfoGAN)、序列生成对抗网络(Sequence GAN,SeqGAN)、Pix2Pix、循环一致生成对抗网络(Cycle-consistent GAN,Cycle GAN)及其增强Cycle-GAN(Augmented CycleGAN).概述了在计算机视觉、语音与NLP领域中基于GAN和相应GAN变种模型的基本原理结构,其中包括:基于CGAN的脸部老化应用(Face aging CGAN,Age-cGAN)、双路径生成对抗网络(Two-pathway GAN,TP-GAN)、表示解析学习生成对抗网络(Disen-tangled representation learning GAN,DR-GAN)、对偶学习生成对抗网络(DualGAN)、GeneGAN、语音增强生成对抗网络(Speech enhancement GAN,SEGAN)等.介绍了GAN在医学、数据增强等领域的应用情况,其中包括:数据增强生成对抗网络(Data augmentation GAN,DAGAN)、医学生成对抗网络(Medical GAN,MedGAN)、无监督像素级域自适应方法(Unsupervised pixel-level domain adaptation method,PixelDA).最后对GAN未来发展趋势及方向进行了展望.
推荐文章
生成对抗网络研究综述
GAN
神经对抗网络
二人博弈
人工智能
深度学习
生成式模型
基于条件的边界平衡生成对抗网络
生成对抗网络
条件特征
边界平衡
图像生成
应用残差生成对抗网络的路况视频帧预测模型
生成对抗网络
深度学习
自动驾驶
路况视频帧预测
基于生成对抗网络的模糊密钥加密通信研究
生成对抗网络
模糊密钥加密
批规格化
全连接神经网络
卷积神经网络
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 生成对抗网络在各领域应用研究进展
来源期刊 自动化学报 学科
关键词 生成对抗网络 对抗学习 自然语言处理 计算机视觉 零和博弈 语音合成与分析
年,卷(期) 2020,(12) 所属期刊栏目 综述
研究方向 页码范围 2500-2536
页数 37页 分类号
字数 语种 中文
DOI 10.16383/j.aas.c180831
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (67)
共引文献  (206)
参考文献  (8)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1985(1)
  • 参考文献(0)
  • 二级参考文献(1)
1992(2)
  • 参考文献(0)
  • 二级参考文献(2)
1994(1)
  • 参考文献(0)
  • 二级参考文献(1)
1995(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(1)
  • 参考文献(0)
  • 二级参考文献(1)
1999(2)
  • 参考文献(0)
  • 二级参考文献(2)
2000(2)
  • 参考文献(0)
  • 二级参考文献(2)
2003(2)
  • 参考文献(0)
  • 二级参考文献(2)
2004(2)
  • 参考文献(0)
  • 二级参考文献(2)
2005(1)
  • 参考文献(0)
  • 二级参考文献(1)
2006(8)
  • 参考文献(0)
  • 二级参考文献(8)
2007(1)
  • 参考文献(0)
  • 二级参考文献(1)
2008(2)
  • 参考文献(0)
  • 二级参考文献(2)
2009(2)
  • 参考文献(0)
  • 二级参考文献(2)
2010(3)
  • 参考文献(0)
  • 二级参考文献(3)
2011(5)
  • 参考文献(0)
  • 二级参考文献(5)
2012(10)
  • 参考文献(0)
  • 二级参考文献(10)
2013(6)
  • 参考文献(0)
  • 二级参考文献(6)
2014(4)
  • 参考文献(1)
  • 二级参考文献(3)
2015(3)
  • 参考文献(0)
  • 二级参考文献(3)
2016(6)
  • 参考文献(1)
  • 二级参考文献(5)
2017(6)
  • 参考文献(2)
  • 二级参考文献(4)
2018(3)
  • 参考文献(3)
  • 二级参考文献(0)
2019(1)
  • 参考文献(1)
  • 二级参考文献(0)
2020(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
生成对抗网络
对抗学习
自然语言处理
计算机视觉
零和博弈
语音合成与分析
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
自动化学报
月刊
0254-4156
11-2109/TP
大16开
北京市海淀区中关村东路95号(北京2728信箱)
2-180
1963
chi
出版文献量(篇)
4124
总下载数(次)
26
总被引数(次)
120705
论文1v1指导