作者:
基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
在多陷阱复杂环境下规划机器人导航路径,蚁群算法容易掉入陷阱而降低运算效率和路径质量,为了解决这一问题,提出了基于多种群蚁群算法的路径规划方法.使用栅格法建立了工作环境的(0~1)矩阵模型,使用路径长度和路径平滑度建立了路径评价函数.针对蚂蚁回退策略陷入陷阱时反复回退、标记、判断而降低算法运行效率,提出了陷阱深度标记策略,使蚂蚁能够跳跃出陷阱而提高效率;提出了多种群搜索策略,对不同的蚂蚁种群使用不同的启发信息,兼顾了算法随机性、目的 性与收敛性.经仿真验证,在多障碍物复杂环境下,多种群蚁群算法规划的路径长度和平滑度明显优于基本蚁群算法;且多种群蚁群算法寻到最优路径的收敛次数也远少于基本蚁群算法.
推荐文章
基于蚁群算法的机器人路径规划
机器人路径规划
蚁群算法
全局路径规划
局部避碰策略
基于改进蚁群算法的机器人路径规划
蚁群算法
移动机器人
路径规划
陷阱
采用能耗最优改进蚁群算法的自治水下机器人路径优化
能耗
蚁群算法
自治水下机器人
距离
基于蚁群算法的自由飞行空间机器人路径规划
自由飞行空间机器人
蚁群算法
路径规划
障碍避碰
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 多陷阱复杂环境下机器人导航路径蚁群规划方法
来源期刊 机械设计与制造 学科 工学
关键词 机器人导航路径 多种群蚁群算法 陷阱深度标记策略 多种群搜索策略
年,卷(期) 2020,(9) 所属期刊栏目 管理与综述
研究方向 页码范围 296-300
页数 5页 分类号 TH16|TP242
字数 语种 中文
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 王明超 7 0 0.0 0.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (35)
共引文献  (32)
参考文献  (11)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1998(1)
  • 参考文献(0)
  • 二级参考文献(1)
1999(1)
  • 参考文献(0)
  • 二级参考文献(1)
2000(3)
  • 参考文献(0)
  • 二级参考文献(3)
2001(1)
  • 参考文献(0)
  • 二级参考文献(1)
2002(1)
  • 参考文献(0)
  • 二级参考文献(1)
2007(2)
  • 参考文献(0)
  • 二级参考文献(2)
2008(2)
  • 参考文献(0)
  • 二级参考文献(2)
2009(2)
  • 参考文献(0)
  • 二级参考文献(2)
2010(2)
  • 参考文献(0)
  • 二级参考文献(2)
2011(4)
  • 参考文献(0)
  • 二级参考文献(4)
2012(3)
  • 参考文献(0)
  • 二级参考文献(3)
2013(4)
  • 参考文献(0)
  • 二级参考文献(4)
2014(3)
  • 参考文献(2)
  • 二级参考文献(1)
2015(4)
  • 参考文献(1)
  • 二级参考文献(3)
2016(6)
  • 参考文献(1)
  • 二级参考文献(5)
2017(6)
  • 参考文献(6)
  • 二级参考文献(0)
2018(1)
  • 参考文献(1)
  • 二级参考文献(0)
2020(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
机器人导航路径
多种群蚁群算法
陷阱深度标记策略
多种群搜索策略
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
机械设计与制造
月刊
1001-3997
21-1140/TH
大16开
沈阳市北陵大街56号
8-131
1963
chi
出版文献量(篇)
18688
总下载数(次)
40
总被引数(次)
104640
论文1v1指导