基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
为了增强模糊局部信息C均值聚类算法的鲁棒性和分割性能,提出一种基于特征选取的模糊局部信息C均值聚类算法.在现有的模糊局部信息C均值聚类算法基础上,对其目标函数的局部邻域约束项添加邻域隶属度约束,并将特征选取的思想引入该目标函数,并利用KL散度作为正则项因子,获得一种新的鲁棒模糊聚类算法.对算法迭代所获得的像素隶属度进行局部中值滤波,再采用最大隶属度准则实现像素归类得到最终分割结果.实验结果表明,文中算法相比现有的FLICM算法具有更好的分割性能和抗噪鲁棒性.
推荐文章
基于局部线性聚类算法的模糊建模
T-S模糊模型
聚类算法
模糊神经网络
模糊规则
基于 BA 的模糊聚类算法研究
蝙蝠算法
模糊C均值聚类
BAFCM
优化
基于模糊聚类特征化软件零水印算法研究
软件水印
模糊聚类
操作码特征
鲁棒性
最优聚类个数和初始聚类中心点选取算法研究
K-means算法
聚类中心
准确率
误差平方和
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于特征选取的局部模糊聚类算法研究
来源期刊 光电技术应用 学科
关键词 模糊C—均值聚类 高斯混合模型 特征选取 局部模糊C均值算法 KL散度
年,卷(期) 2021,(3) 所属期刊栏目 信号与信息处理|Signal and Information Processing
研究方向 页码范围 35-42
页数 8页 分类号 TP391.41
字数 语种 中文
DOI 10.3969/j.issn.1673-1255.2021.03.009
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (25)
共引文献  (16)
参考文献  (13)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1948(1)
  • 参考文献(0)
  • 二级参考文献(1)
1973(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(2)
  • 参考文献(1)
  • 二级参考文献(1)
1998(1)
  • 参考文献(0)
  • 二级参考文献(1)
2001(1)
  • 参考文献(0)
  • 二级参考文献(1)
2004(4)
  • 参考文献(3)
  • 二级参考文献(1)
2005(2)
  • 参考文献(1)
  • 二级参考文献(1)
2006(4)
  • 参考文献(1)
  • 二级参考文献(3)
2007(2)
  • 参考文献(1)
  • 二级参考文献(1)
2008(2)
  • 参考文献(0)
  • 二级参考文献(2)
2009(5)
  • 参考文献(0)
  • 二级参考文献(5)
2010(3)
  • 参考文献(1)
  • 二级参考文献(2)
2011(1)
  • 参考文献(1)
  • 二级参考文献(0)
2012(2)
  • 参考文献(0)
  • 二级参考文献(2)
2013(1)
  • 参考文献(1)
  • 二级参考文献(0)
2014(1)
  • 参考文献(0)
  • 二级参考文献(1)
2015(1)
  • 参考文献(0)
  • 二级参考文献(1)
2016(3)
  • 参考文献(2)
  • 二级参考文献(1)
2017(1)
  • 参考文献(1)
  • 二级参考文献(0)
2021(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
模糊C—均值聚类
高斯混合模型
特征选取
局部模糊C均值算法
KL散度
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
光电技术应用
双月刊
1673-1255
12-1444/TN
大16开
天津市空港经济区纬五道9号
1982
chi
出版文献量(篇)
2224
总下载数(次)
8
总被引数(次)
9885
论文1v1指导