基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
为了解决支持向量机(Support Vector Machine,SVM)分类器人脸识别率不高的问题,提出了一种快速主成分分析法(fast Principal Component Analysis,fast PCA)与优化参数支持向量机分类器相结合的人脸识别算法.首先,在传统的PCA算法理论基础上提出一种快速PCA算法,用于人脸图像的降维和特征提取,减少特征提取时间,降低计算量,缩短SVM识别时间;其次,利用K折交叉验证法(K-fold cross-validation method,K-CV)联合改进的网格搜索法对SVM分类器最优参数进行搜索,减少最优参数搜索时间,提高算法人脸识别率和泛化能力.在ORL人脸库实验结果表明:该算法在每类训练样本数大于5时,人脸识别率为100%;在训练样本较少时,仍然保持较高识别率.与一般的SVM算法及PCA算法比较,该算法平均识别率提高了0.61%~8.92%.
推荐文章
基于MB-LBP算子和Multilinear PCA算法的人脸识别
MB-LBP算法
Multilinear PCA算法
特征提取
人脸识别
基于小波和DFB-PCA的人脸识别算法研究
小波变换
DFB-PCA
图像识别
人脸识别
基于LLE和LS-SVM的人脸识别方法
人脸识别
主成分分析
局部线性嵌套
最小二乘支持向量机
基于PCA算法的人脸识别方法研究比较
主成分分析
二维主成分分析
数据降维
人脸识别
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于fast PCA和K-CV优化SVM的人脸识别算法研究
来源期刊 湖北民族大学学报(自然科学版) 学科
关键词 人脸识别 快速PCA 支持向量机 交叉验证 网格搜索法
年,卷(期) 2021,(2) 所属期刊栏目 计算机科学与技术|Computer Science and Technology
研究方向 页码范围 193-198
页数 6页 分类号 TP391.9|TN911.73
字数 语种 中文
DOI 10.13501/j.cnki.42-1908/n.2021.06.013
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (128)
共引文献  (1855)
参考文献  (15)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1990(2)
  • 参考文献(0)
  • 二级参考文献(2)
1991(3)
  • 参考文献(0)
  • 二级参考文献(3)
1992(1)
  • 参考文献(0)
  • 二级参考文献(1)
1994(2)
  • 参考文献(0)
  • 二级参考文献(2)
1995(2)
  • 参考文献(0)
  • 二级参考文献(2)
1996(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(5)
  • 参考文献(2)
  • 二级参考文献(3)
1998(5)
  • 参考文献(0)
  • 二级参考文献(5)
1999(1)
  • 参考文献(0)
  • 二级参考文献(1)
2000(2)
  • 参考文献(1)
  • 二级参考文献(1)
2001(1)
  • 参考文献(0)
  • 二级参考文献(1)
2002(1)
  • 参考文献(0)
  • 二级参考文献(1)
2003(2)
  • 参考文献(0)
  • 二级参考文献(2)
2004(2)
  • 参考文献(0)
  • 二级参考文献(2)
2005(6)
  • 参考文献(0)
  • 二级参考文献(6)
2007(1)
  • 参考文献(0)
  • 二级参考文献(1)
2008(2)
  • 参考文献(1)
  • 二级参考文献(1)
2009(6)
  • 参考文献(0)
  • 二级参考文献(6)
2010(8)
  • 参考文献(1)
  • 二级参考文献(7)
2011(4)
  • 参考文献(0)
  • 二级参考文献(4)
2012(5)
  • 参考文献(0)
  • 二级参考文献(5)
2013(9)
  • 参考文献(0)
  • 二级参考文献(9)
2014(7)
  • 参考文献(0)
  • 二级参考文献(7)
2015(8)
  • 参考文献(1)
  • 二级参考文献(7)
2016(10)
  • 参考文献(0)
  • 二级参考文献(10)
2017(20)
  • 参考文献(0)
  • 二级参考文献(20)
2018(10)
  • 参考文献(2)
  • 二级参考文献(8)
2019(12)
  • 参考文献(3)
  • 二级参考文献(9)
2020(5)
  • 参考文献(4)
  • 二级参考文献(1)
2021(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
人脸识别
快速PCA
支持向量机
交叉验证
网格搜索法
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
湖北民族大学学报(自然科学版)
季刊
2096-7594
42-1908/N
大16开
湖北省恩施市三孔桥湖北民族学院学报编辑部
1982
chi
出版文献量(篇)
2388
总下载数(次)
3
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导