Circular RNAs (circRNAs) are a recently dis-covered type of non-coding RNA derived from pre-mRNAs. R-loops consist of a DNA:RNA hybrid and the associated single-stranded DNA. In Arabi-dopsis thaliana, circRNA:DNA R-loops regulate alternative splicing (AS) of SEPALLATA3 (SEP3). However, the occurrence and functions of circRNAs and R-loops in Populus trichocarpa are largely unexplored. Here, we performed circRNA-enriched sequencing in the stem-differentiating xylem (SDX) of P. trichocarpa and identified 2,742 distinct circRNAs, including circ-CESA4, circ-IRX7, and circ-GUX1, which are generated from genes involved in cellulose, and hemicellulose biosyn-thesis, respectively. To investigate the roles of circRNAs in modulating alternative splicing (AS), we detected 7,836 AS events using PacBio Iso-Seq and identified 634 circRNAs that overlapped with 699 AS events. Furthermore, using DNA:RNA hybrid immunoprecipitation followed by se-quencing (DRIP-seq), we identified 8,932 R-loop peaks that overlapped with 181 circRNAs and 672 AS events. Notably, several SDX-related circRNAs overlapped with R-loop peaks, pointing to their possible roles in modulating AS in SDX. Indeed, overexpressing circ-IRX7 increased the levels of R-loop structures and decreased the frequency of intron retention in linear IRX7 transcripts. This study provides a valuable R-loop atlas resource and uncovers the interplay between circRNAs and AS in SDX of P. trichocarpa.