针对差分隐私随机森林算法在对高维数据进行分类时准确率不理想的问题,本文通过引入差分隐私下的包外估计来计算决策树权重以及特征权重,从而提出一种基于差分隐私下包外估计的随机森林算法(random forest under differential priva-cy based on the out-of-bag estimate,RFDP_OOB).本算法首先在差分隐私保护下生成一部分的随机森林,利用差分隐私下包外估计的特性对决策树和特征的重要性进行评估,从而计算出决策树权重以及特征权重,然后通过特征权重对特征进行划分,得到非重要特征集.接着在生成剩下的一部分随机森林的过程中,对最佳特征为非重要特征的结点进行预剪枝操作,使其成为叶子结点,从而减小噪声、提高决策树分类准确率,并具有较好的执行效率.最后在预测分类结果时,取所对应的决策树权重最大的分类结果作为随机森林算法的分类结果,从而提高随机森林算法的分类准确率.本文还对算法的有效性和隐私性进行了理论分析,并通过实验结果验证了本算法的有效性,本算法可以在保护数据隐私性的同时提高算法的分类准确率.