基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
随着生活水平提高,铁路客运量的预测也越来越重要,铁路客运量数据非线性且非平稳,预测难度较大.为了使预测的结果更加准确,将经验模态分解模型与支持向量机模型进行组合,对铁路的客运量数据进行预测.首先运用经验模态分解模型将铁路客运量数据分解,提取前三个不同频率的平稳分量以及余项;然后使用支持向量机分别对其进行回归预测,在建立模型时,使用滞后三个月的数据作为输入,当月数据作为输出;最后叠加每个分量的预测值,从而得到预测数据.
推荐文章
基于最小二乘支持向量机的铁路客运量预测研究
铁路客运量
最小二乘支持向量机
预测模型
支持向量回归机在铁路客运量时间序列预测中的应用
铁路客运量
ε支持向量回归机
人工神经网络
时间序列预测
基于支持向量机的铁路客运量预测
最小二乘支持向量机
铁路
预测
客运量
河南省2012—2020年交通客运量预测与分析
客运量预测
时间序列
指数平滑
ARIMA模型
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于EMD和SVM的铁路客运量分析研究
来源期刊 山西大同大学学报(自然科学版) 学科
关键词 铁路客运量 经验模态分解 支持向量机 组合预测
年,卷(期) 2021,(1) 所属期刊栏目 经济与管理|Economics & Management
研究方向 页码范围 50-54
页数 5页 分类号 F222|O159
字数 语种 中文
DOI 10.3969/j.issn.1674-0874.2021.01.014
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (120)
共引文献  (199)
参考文献  (11)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1966(1)
  • 参考文献(0)
  • 二级参考文献(1)
1989(1)
  • 参考文献(0)
  • 二级参考文献(1)
1990(1)
  • 参考文献(0)
  • 二级参考文献(1)
1996(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(1)
  • 参考文献(0)
  • 二级参考文献(1)
1998(4)
  • 参考文献(0)
  • 二级参考文献(4)
1999(1)
  • 参考文献(0)
  • 二级参考文献(1)
2000(2)
  • 参考文献(1)
  • 二级参考文献(1)
2001(3)
  • 参考文献(0)
  • 二级参考文献(3)
2002(3)
  • 参考文献(0)
  • 二级参考文献(3)
2003(7)
  • 参考文献(0)
  • 二级参考文献(7)
2004(6)
  • 参考文献(0)
  • 二级参考文献(6)
2005(14)
  • 参考文献(1)
  • 二级参考文献(13)
2006(8)
  • 参考文献(0)
  • 二级参考文献(8)
2007(9)
  • 参考文献(2)
  • 二级参考文献(7)
2008(4)
  • 参考文献(0)
  • 二级参考文献(4)
2009(8)
  • 参考文献(1)
  • 二级参考文献(7)
2010(7)
  • 参考文献(0)
  • 二级参考文献(7)
2011(5)
  • 参考文献(0)
  • 二级参考文献(5)
2012(4)
  • 参考文献(1)
  • 二级参考文献(3)
2013(2)
  • 参考文献(0)
  • 二级参考文献(2)
2014(5)
  • 参考文献(0)
  • 二级参考文献(5)
2015(9)
  • 参考文献(1)
  • 二级参考文献(8)
2016(8)
  • 参考文献(0)
  • 二级参考文献(8)
2017(2)
  • 参考文献(0)
  • 二级参考文献(2)
2018(9)
  • 参考文献(1)
  • 二级参考文献(8)
2019(4)
  • 参考文献(1)
  • 二级参考文献(3)
2020(2)
  • 参考文献(2)
  • 二级参考文献(0)
2021(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
铁路客运量
经验模态分解
支持向量机
组合预测
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
山西大同大学学报(自然科学版)
双月刊
1674-0874
14-1344/N
大16开
山西省大同市新平旺
1985
chi
出版文献量(篇)
2666
总下载数(次)
9
总被引数(次)
5411
论文1v1指导