基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
客户流失是现代企业面临最困难的问题,对客户流失进行预测是电信业保留现有客户的最有效策略之一.电信客户数据集往往具有高维特征,选择重要特征并减少无关属性的数量可以提高模型的分类性能.针对客户流失数据集高维特征的问题,提出了一种混合的XGB-BFS特征选择方法.首先基于XGBoost的Fscore值对特征重要性排序来度量特征与目标变量之间的相关关系,然后使用序列后向搜索的方法依次删除重要性最低的特征,根据验证集的AUC值判断是否保留该特征,最后将选择的特征子集用于构建XGBoost客户流失预测模型.在电信客户流失数据集上的实验结果表明,该方法能够筛选出特征重要性较高的特征且删除了冗余特征,与基于递归特征消除的Logistic模型、基于Embedded的Adaboost和随机森林模型相比,具有良好的性能.
推荐文章
电信客户流失的组合预测模型
客户流失
预测模型
电信企业
决策树C5.0
BP神经网络
Logistic回归算法
基于改进聚类的电信客户流失预测分析
聚类
客户流失
加权
预测分析
基于代价敏感SVM的电信客户流失预测研究
客户流失
支持向量机
非平衡数据
代价敏感
基于多模式的电信客户流失预测模型
客户流失
电信客户
多模式
分类预测
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于XGB-BFS特征选择算法的电信客户流失预测
来源期刊 计算机技术与发展 学科
关键词 客户流失预测 特征选择 XGBoost 特征重要性 序列后向搜索
年,卷(期) 2021,(5) 所属期刊栏目 大数据分析与挖掘
研究方向 页码范围 21-25
页数 5页 分类号 TP312
字数 语种 中文
DOI 10.3969/j.issn.1673-629X.2021.05.004
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (192)
共引文献  (33)
参考文献  (20)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1900(1)
  • 参考文献(0)
  • 二级参考文献(1)
1948(1)
  • 参考文献(0)
  • 二级参考文献(1)
1968(1)
  • 参考文献(0)
  • 二级参考文献(1)
1970(1)
  • 参考文献(0)
  • 二级参考文献(1)
1980(2)
  • 参考文献(0)
  • 二级参考文献(2)
1987(1)
  • 参考文献(0)
  • 二级参考文献(1)
1990(1)
  • 参考文献(0)
  • 二级参考文献(1)
1994(1)
  • 参考文献(0)
  • 二级参考文献(1)
1995(1)
  • 参考文献(0)
  • 二级参考文献(1)
1996(2)
  • 参考文献(0)
  • 二级参考文献(2)
1997(1)
  • 参考文献(0)
  • 二级参考文献(1)
1999(3)
  • 参考文献(0)
  • 二级参考文献(3)
2000(4)
  • 参考文献(0)
  • 二级参考文献(4)
2001(1)
  • 参考文献(0)
  • 二级参考文献(1)
2002(4)
  • 参考文献(0)
  • 二级参考文献(4)
2003(3)
  • 参考文献(0)
  • 二级参考文献(3)
2004(3)
  • 参考文献(0)
  • 二级参考文献(3)
2005(5)
  • 参考文献(0)
  • 二级参考文献(5)
2006(4)
  • 参考文献(0)
  • 二级参考文献(4)
2007(4)
  • 参考文献(0)
  • 二级参考文献(4)
2008(7)
  • 参考文献(0)
  • 二级参考文献(7)
2009(7)
  • 参考文献(0)
  • 二级参考文献(7)
2010(11)
  • 参考文献(0)
  • 二级参考文献(11)
2011(9)
  • 参考文献(0)
  • 二级参考文献(9)
2012(11)
  • 参考文献(0)
  • 二级参考文献(11)
2013(16)
  • 参考文献(1)
  • 二级参考文献(15)
2014(22)
  • 参考文献(0)
  • 二级参考文献(22)
2015(15)
  • 参考文献(1)
  • 二级参考文献(14)
2016(22)
  • 参考文献(0)
  • 二级参考文献(22)
2017(18)
  • 参考文献(5)
  • 二级参考文献(13)
2018(11)
  • 参考文献(2)
  • 二级参考文献(9)
2019(16)
  • 参考文献(8)
  • 二级参考文献(8)
2020(3)
  • 参考文献(3)
  • 二级参考文献(0)
2021(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
客户流失预测
特征选择
XGBoost
特征重要性
序列后向搜索
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机技术与发展
月刊
1673-629X
61-1450/TP
大16开
西安市雁塔路南段99号
52-127
1991
chi
出版文献量(篇)
12927
总下载数(次)
40
总被引数(次)
111596
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导