基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
传统的目标跟踪算法易受边界效应影响,且当目标因遮挡严重、运动模糊、光照变化等产生外观变化时,目标响应图会发生突变,从而降低目标跟踪检测结果的可信度.提出一种改进的高效卷积算子(ECO)目标跟踪算法.利用高斯混合模型生成紧凑且多样化的样本数据,采用因式分解卷积方法减少模型参数,引入空间权值系数和前后两帧响应图的变化率来弱化边界效应并抑制响应图突变,以提高目标跟踪算法的鲁棒性能和精度.实验结果表明,在光照、尺度变化等多种干扰下,该算法的成功率和距离精度较原始ECO算法分别提高3.1个百分点和1.9个百分点.
推荐文章
改进的卷积网络目标跟踪算法
目标跟踪
卷积网络
深度学习
新的高效多目标跟踪算法
多目标跟踪
联合数据关联
确认矩阵
实时性
计算量
基于卷积神经网络多层特征融合的目标跟踪
目标跟踪
特征融合
特征表达
目标定位
卷积神经网络
回归模型
基于深度特征的稀疏表示目标跟踪算法
目标跟踪
稀疏表示
卷积神经网络
生成模型
深度学习
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于高效卷积算子的异常抑制目标跟踪算法
来源期刊 计算机工程 学科
关键词 目标跟踪 高效卷积算子 相关滤波 边界效应 响应突变抑制
年,卷(期) 2021,(7) 所属期刊栏目 图形图像处理|Graphics and Image Processing
研究方向 页码范围 266-272,288
页数 8页 分类号 TP751
字数 语种 中文
DOI 10.19678/j.issn.1000-3428.0058795
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (51)
共引文献  (32)
参考文献  (5)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1988(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(1)
  • 参考文献(0)
  • 二级参考文献(1)
1998(1)
  • 参考文献(0)
  • 二级参考文献(1)
2002(1)
  • 参考文献(0)
  • 二级参考文献(1)
2003(1)
  • 参考文献(0)
  • 二级参考文献(1)
2004(3)
  • 参考文献(0)
  • 二级参考文献(3)
2006(1)
  • 参考文献(0)
  • 二级参考文献(1)
2009(2)
  • 参考文献(0)
  • 二级参考文献(2)
2010(1)
  • 参考文献(0)
  • 二级参考文献(1)
2011(4)
  • 参考文献(0)
  • 二级参考文献(4)
2012(3)
  • 参考文献(0)
  • 二级参考文献(3)
2013(3)
  • 参考文献(0)
  • 二级参考文献(3)
2014(4)
  • 参考文献(0)
  • 二级参考文献(4)
2015(7)
  • 参考文献(1)
  • 二级参考文献(6)
2016(10)
  • 参考文献(1)
  • 二级参考文献(9)
2017(6)
  • 参考文献(1)
  • 二级参考文献(5)
2018(5)
  • 参考文献(0)
  • 二级参考文献(5)
2019(2)
  • 参考文献(2)
  • 二级参考文献(0)
2021(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
目标跟踪
高效卷积算子
相关滤波
边界效应
响应突变抑制
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机工程
月刊
1000-3428
31-1289/TP
大16开
上海市桂林路418号
4-310
1975
chi
出版文献量(篇)
31987
总下载数(次)
53
论文1v1指导