基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
非限制场景下存在光照、遮挡和姿态变化等问题,这严重影响了人脸识别模型的性能和准确度.针对该问题,本文对facenet进行改进,提出了一种基于facenet皮尔森判别网络的人脸识别方法facenetPDN.首先,构建facenetPDN深度卷积神经网络,在facenet前端融合多任务级联卷积神经网络进行人脸检测提取目标人脸.然后,通过深度神经网络提取人脸深度特征信息,采用皮尔森相关系数判别模块替换facenet中的欧氏距离判别模块实现人脸深度特征判别.最后,使用CASIA-WebFace和CASIA-FaceV5人脸数据集训练网络.为了证明本文方法的有效性,训练后的模型在LFW和celeA人脸数据集进行测试和评估,并进行对比分析.实验结果表明,改进后的facenetPDN方法的准确度比原来整体提高了1.34%,在融合训练集下提高了0.78%,该算法鲁棒性和泛化能力优良,可实现多人种的人脸识别,对非限制场景下人脸目标具有良好的识别效果.
推荐文章
基于视频监控的人脸识别方法
人脸识别
监控视频
人脸序列
协同识别
基于LLE算法的人脸识别方法
子空间分析
局部线性嵌入
非线性降维
人脸识别
基于SVD和LDA的人脸识别方法
人脸识别
奇异值分解
线性鉴别分析
反向传播神经网络
基于代价敏感卷积神经网络的人脸年龄识别方法
卷积神经网路
人脸年龄识别
误分类代价
代价敏感性
期望类最大原则
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 facenet皮尔森判别网络的人脸识别方法
来源期刊 智能系统学报 学科 工学
关键词 非限制场景 人脸识别 facenet 多任务级联卷积神经网络 人脸检测 皮尔森相关系数 欧氏距离 人脸数据集
年,卷(期) 2022,(1) 所属期刊栏目 智能系统|Intelligent Systems
研究方向 页码范围 107-115
页数 9页 分类号 TP391.41
字数 语种 中文
DOI 10.11992/tis.202104008
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2022(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
非限制场景
人脸识别
facenet
多任务级联卷积神经网络
人脸检测
皮尔森相关系数
欧氏距离
人脸数据集
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
智能系统学报
双月刊
1673-4785
23-1538/TP
大16开
哈尔滨市南岗区南通大街145-1号楼
2006
chi
出版文献量(篇)
2770
总下载数(次)
11
相关基金
黑龙江省自然科学基金
英文译名:
官方网址:http://jj.dragon.cn/zr/index.asp
项目类型:
学科类型:
论文1v1指导