基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
针对传统疲劳驾驶检测方法识别准确率低、泛化能力差的问题,提出了一种基于CNNs和LSTM的端到端可训练网络,检测驾驶员的疲劳状态.根据驾驶员面部特征点提取ROI,将在其他计算机视觉任务上表现较好的深度网络迁移到疲劳检测任务中,并结合LSTM处理时序数据的能力,提出一种新的疲劳检测网络,该网络能够读入视频流中的时序数据并检测出驾驶员的疲劳状态.实验证明所提方法和模型在公开数据集中具有较高的识别准确率,并且在不同的数据集间具有很好的泛化能力,对于减少路面车祸、保障人身安全具有很重要的意义.
推荐文章
基于时序性面部动作信息的驾驶员状态检测框架
异常驾驶
时序性信息
面部检测
长短期记忆网络
基于Adaboost的疲劳驾驶眨眼检测
疲劳驾驶
分类器
人脸检测
眨眼检测
基于机器视觉的驾驶员疲劳检测方法
疲劳检测
人脸检测
Adaboost算法
信息融合
疲劳驾驶面部表情识别算法
表情识别
加博滤波
核函数
支持向量机
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于驾驶员面部时序数据的疲劳驾驶检测算法
来源期刊 测控技术 学科 工学
关键词 迁移学习 疲劳驾驶 疲劳检测 ResNet LSTM
年,卷(期) 2022,(2) 所属期刊栏目 模式识别与人工智能
研究方向 页码范围 13-19,48
页数 8页 分类号 TP391.4
字数 语种 中文
DOI 10.19708/j.ckjs.2021.04.224
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2022(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
迁移学习
疲劳驾驶
疲劳检测
ResNet
LSTM
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
测控技术
月刊
1000-8829
11-1764/TB
大16开
北京2351信箱《测控技术》杂志社
82-533
1980
chi
出版文献量(篇)
8430
总下载数(次)
24
总被引数(次)
55628
相关基金
国家自然科学基金
英文译名:the National Natural Science Foundation of China
官方网址:http://www.nsfc.gov.cn/
项目类型:青年科学基金项目(面上项目)
学科类型:数理科学
论文1v1指导