基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
Traditional cubature Kalman filter (CKF) is a preferable tool for the inertial navigation system (INS)/global positioning system (GPS) integration under Gaussian noises. The CKF, however, may provide a significantly biased estimate when the INS/GPS system suffers from complex non-Gaussian disturbances. To address this issue, a robust nonlinear Kalman filter referred to as cubature Kalman filter under minimum error entropy with fiducial points (MEEF-CKF) is proposed. The MEEF-CKF behaves a strong robustness against complex non-Gaussian noises by operating several major steps, i.e., regression model construction, robust state estimation and free parameters optimization. More concretely, a regression model is constructed with the consideration of residual error caused by linearizing a nonlinear function at the first step. The MEEF-CKF is then developed by solving an optimization problem based on minimum error entropy with fiducial points (MEEF) under the framework of the regression model. In the MEEF-CKF, a novel optimization approach is provided for the purpose of determining free parameters adaptively. In addition, the computational complexity and convergence analyses of the MEEF-CKF are conducted for demonstrating the calculational burden and convergence characteristic. The enhanced robustness of the MEEF-CKF is demonstrated by Monte Carlo simulations on the application of a target tracking with INS/GPS integration under complex non-Gaussian noises.
推荐文章
容错滤波及在GPS/INS组合制导中的应用
GPS
组合制导
Kalman滤波
容错
基于GPS/INS紧耦合的神经网络辅助滤波算法
GPS
INS组合导航
紧耦合
扩展Kalman滤波
RBF神经网络
导航精度
GPS/INS组合导航系统的研究
GPS
INS
组合导航
卡尔曼滤波
动态自适应GPS/INS组合导航方法
组合导航
惯性导航系统
RTK GPS
伪距
卡尔曼滤波
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 Cubature Kalman Filter Under Minimum Error Entropy With Fiducial Points for INS/GPS Integration
来源期刊 自动化学报(英文版) 学科
关键词
年,卷(期) 2022,(3) 所属期刊栏目 PAPERS
研究方向 页码范围 450-465
页数 16页 分类号
字数 语种 英文
DOI 10.1109/JAS.2021.1004350
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2022(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
引文网络交叉学科
相关学者/机构
期刊影响力
自动化学报(英文版)
双月刊
2329-9266
10-1193/TP
大16开
北京市海淀区中关村东路95号
80-604
2014
eng
出版文献量(篇)
801
总下载数(次)
0
论文1v1指导