针对单一机器人在复杂场景下进行同步定位与建图存在的视角局限等问题,本文提出了一种空地正交视角下的空中无人机与地面机器人协同定位与融合建图方法.鉴于无人机的空中视角与地面机器人视角属于正交关系,该方法主要思想是解决空地正交视角的坐标系转换问题.首先,设计了一种空中无人机和地面机器人协同定位与建图的框架,通过无人机提供的全局俯视图像与地面机器人的局部平视图像获得全面丰富的场景信息.在此基础上,通过融合惯性测量单元和图像信息修正偏移并优化轨迹,利用地面机器人上带有尺度信息的视觉标识,获得坐标系转换矩阵以融合地图.最后多组真实场景实验验证了该方法具有有效性,是空地协同多机器人协同定位及融合建图(simultaneous localization and mapping,SLAM)领域中值得参考的方法.
针对在移动机器人同时定位与建图(SLAM)过程中如何快速准确获取数据关联结果的问题,提出了一种基于DBSCAN(density-based spatial clustering of application with noise)聚类分组的快速联合兼容SLAM数据关联算法(DFJCBB).首先,采用局部关联策略将参与关联的特征点限定在局部地图中;其次,针对多数环境中量测都有较明显的分布,采用一种基于密度聚类的方法DBSCAN对当前时刻的量测进行分组,从而得到若干关联度小的观测小组;最后,在每个小组中采用联合兼容分支定界(JCBB)算法进行数据关联,以获得每个小组量测与局部地图特征之间的最优关联解,并将这些关联解组合获得最终的关联结果.基于模拟器和标准数据集的仿真实验验证了该关联算法的性能,结果表明该关联算法在保证获得较高关联准确度的同时,大大降低了算法复杂度、缩短了运行时间,适用于解决不同复杂环境中的SLAM数据关联问题.