基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
针对在噪声环境下的说话人识别系统,做了两点改进.第一,为了提高系统的鲁棒性,通过不同尺度的小波基,把含有噪声的信号分解于不同频段中,然后在各个频段分别通过TEO(Teager能量算子)去噪.针对说话人识别的特点,在小波重构时对各小波系数进行了加权处理.再把各个频段的输出通过小波重构恢复信号.最后通过Mel滤波器组把小波系数转换成MFCC.第二,为了进一步提高识别性能和训练速度,在识别阶段采用了改进的OGMM(正交高斯混合模型),即把正交变换改到EM算法之前进行,这样就不必要在EM迭代过程中每次都进行正交运算了.从实验得出,采用本文提出的DWT-TEO参数对于说话人识别的效果较好.采用改进的OGMM进一步提高了识别性能和训练速度.
推荐文章
MFCC和短时TEO能量的混合参数应用于说话人识别
说话人识别
Mel频率倒谱系数
Teager能量算子
混合特征参数
GMM-UBM
基于EEMD-TEO和概率神经网络的说话人识别
EEMD
说话人识别
TEO能量算子
IMF分量
基于支持向量机的说话人识别研究
支持向量机
说话人识别
结构风险最小化
核函数
基于矢量量化方法的说话人识别技术
矢量量化
说话人识别
线性预测倒谱系数
美尔倒谱系数
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于DWT-TEO的说话人识别
来源期刊 自动化学报 学科 工学
关键词 小波变换 TEO DWT-TEO OGMM
年,卷(期) 2006,(5) 所属期刊栏目 论文与报告
研究方向 页码范围 753-759
页数 7页 分类号 TN91
字数 4215字 语种 中文
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 尹俊勋 华南理工大学电信学院 118 876 12.0 25.0
2 邱政权 华南理工大学电信学院 8 26 3.0 5.0
3 薛丽萍 华南理工大学电信学院 4 24 3.0 4.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (7)
共引文献  (9)
参考文献  (5)
节点文献
引证文献  (9)
同被引文献  (11)
二级引证文献  (7)
1989(1)
  • 参考文献(1)
  • 二级参考文献(0)
1993(2)
  • 参考文献(0)
  • 二级参考文献(2)
1996(2)
  • 参考文献(0)
  • 二级参考文献(2)
1997(1)
  • 参考文献(0)
  • 二级参考文献(1)
1999(1)
  • 参考文献(0)
  • 二级参考文献(1)
2000(1)
  • 参考文献(0)
  • 二级参考文献(1)
2001(1)
  • 参考文献(1)
  • 二级参考文献(0)
2003(1)
  • 参考文献(1)
  • 二级参考文献(0)
2004(2)
  • 参考文献(2)
  • 二级参考文献(0)
2006(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2008(1)
  • 引证文献(1)
  • 二级引证文献(0)
2009(1)
  • 引证文献(1)
  • 二级引证文献(0)
2010(6)
  • 引证文献(3)
  • 二级引证文献(3)
2013(1)
  • 引证文献(0)
  • 二级引证文献(1)
2016(1)
  • 引证文献(0)
  • 二级引证文献(1)
2017(3)
  • 引证文献(3)
  • 二级引证文献(0)
2018(1)
  • 引证文献(1)
  • 二级引证文献(0)
2019(1)
  • 引证文献(0)
  • 二级引证文献(1)
2020(1)
  • 引证文献(0)
  • 二级引证文献(1)
研究主题发展历程
节点文献
小波变换
TEO
DWT-TEO
OGMM
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
自动化学报
月刊
0254-4156
11-2109/TP
大16开
北京市海淀区中关村东路95号(北京2728信箱)
2-180
1963
chi
出版文献量(篇)
4124
总下载数(次)
26
总被引数(次)
120705
相关基金
广东省自然科学基金
英文译名:Guangdong Natural Science Foundation
官方网址:http://gdsf.gdstc.gov.cn/
项目类型:研究团队
学科类型:
论文1v1指导