基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
提出了一种将局部特征加权与二维主成分分析相结合的局部加权的二维主成分分析方法.引入了二维局部加权特征子空间的概念,将各类样本映射到这个局部加权特征子空间,再通过计算测试样本到加权子空间的距离进行样本的分类.使用这种方法在ORL人脸库上进行测试,结果表明,经过局部特征加权的二维主成分分析方法比普通的二维主成分分析方法具有更优的性能,并且在提高识别率的同时算法的复杂程度并没有明显增加.
推荐文章
改进的二维主成分分析的人脸识别新算法
二维主成分分析
人脸识别
改进的感知哈希技术
多角度旋转
图像特征提取
角度自矫正
改进的完全二维主成分分析及其在步态识别中的应用研究
步态识别
步态能量图
完全二维主成分分析
加权完全二维主成分分析
结合主成分分析和局部导数模式的人脸识别方法
人脸识别
局部导数模式
主成分分析法
相似度计算
基于二维主成分分析的图像特征提取研究
二维主成分分析
特征提取
人脸识别
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 一种局部加权的二维主成分分析算法及其在人脸识别中的应用
来源期刊 智能系统学报 学科 工学
关键词 二维主成分分析 局部加权 人脸识别 加权特征提取
年,卷(期) 2007,(3) 所属期刊栏目 学术论文
研究方向 页码范围 25-29
页数 5页 分类号 TP391.4
字数 3518字 语种 中文
DOI 10.3969/j.issn.1673-4785.2007.03.005
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 阮秋琦 北京交通大学计算机与信息技术学院 105 1445 20.0 32.0
2 金一 北京交通大学计算机与信息技术学院 8 199 5.0 8.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (30)
共引文献  (101)
参考文献  (8)
节点文献
引证文献  (12)
同被引文献  (4)
二级引证文献  (12)
1986(1)
  • 参考文献(0)
  • 二级参考文献(1)
1990(2)
  • 参考文献(1)
  • 二级参考文献(1)
1991(4)
  • 参考文献(1)
  • 二级参考文献(3)
1992(1)
  • 参考文献(0)
  • 二级参考文献(1)
1993(1)
  • 参考文献(0)
  • 二级参考文献(1)
1994(1)
  • 参考文献(0)
  • 二级参考文献(1)
1995(2)
  • 参考文献(0)
  • 二级参考文献(2)
1996(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(6)
  • 参考文献(1)
  • 二级参考文献(5)
1998(3)
  • 参考文献(0)
  • 二级参考文献(3)
1999(2)
  • 参考文献(0)
  • 二级参考文献(2)
2000(6)
  • 参考文献(0)
  • 二级参考文献(6)
2001(1)
  • 参考文献(0)
  • 二级参考文献(1)
2002(3)
  • 参考文献(1)
  • 二级参考文献(2)
2003(1)
  • 参考文献(1)
  • 二级参考文献(0)
2004(2)
  • 参考文献(2)
  • 二级参考文献(0)
2005(1)
  • 参考文献(1)
  • 二级参考文献(0)
2007(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2008(2)
  • 引证文献(2)
  • 二级引证文献(0)
2009(4)
  • 引证文献(2)
  • 二级引证文献(2)
2010(5)
  • 引证文献(1)
  • 二级引证文献(4)
2011(1)
  • 引证文献(0)
  • 二级引证文献(1)
2012(1)
  • 引证文献(1)
  • 二级引证文献(0)
2013(3)
  • 引证文献(1)
  • 二级引证文献(2)
2014(2)
  • 引证文献(2)
  • 二级引证文献(0)
2015(1)
  • 引证文献(0)
  • 二级引证文献(1)
2016(3)
  • 引证文献(2)
  • 二级引证文献(1)
2017(1)
  • 引证文献(1)
  • 二级引证文献(0)
2018(1)
  • 引证文献(0)
  • 二级引证文献(1)
研究主题发展历程
节点文献
二维主成分分析
局部加权
人脸识别
加权特征提取
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
智能系统学报
双月刊
1673-4785
23-1538/TP
大16开
哈尔滨市南岗区南通大街145-1号楼
2006
chi
出版文献量(篇)
2770
总下载数(次)
11
总被引数(次)
12401
相关基金
国家重点基础研究发展计划(973计划)
英文译名:National Basic Research Program of China
官方网址:http://www.973.gov.cn/
项目类型:
学科类型:农业
论文1v1指导