基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
传统独立元分析(Independent Component Analysis,ICA)用于人脸识别首先是将人脸图像矩阵转换成向量求白化矩阵,然后利用快速固定点算法求分离矩阵,获得人脸图像独立基子空间,从而实现人脸识别.二维主元分析(Two-dimensional Principle Component Analysis,2DPCA)无须将人脸图像矩阵转换成向量,直接利用二维人脸图像矩阵求协方差矩阵,其特征值与特征向量的计算得到简化.本文结合2DPCA与ICA算法的特点,提出2DPCA-ICA人脸识别算法.该方法通过2DPCA算法计算白化矩阵;接着利用ICA算法获得人脸图像的独立元;然后构造独立基子空间;最后依据测试样本在独立基子空间上的投影特征实现人脸识别.基于ORL与Yale人脸数据库的实验结果表明,2DPCA-ICA算法正确识别率与识别效率均高于PCA-ICA算法与2DPCA算法,是一种有效的人脸识别方法.
推荐文章
基于BP神经网络的2DPCA人脸识别算法
人脸识别
2DPCA
BP神经网络
图像预处理
融合2DPCA和贝叶斯的人脸识别算法
人脸识别
2DPCA
小波变换
贝叶斯方法
一种基于2DPCA和LDA的人脸表情识别算法
Gabor特征
2DPCA
LDA
C-Mean
KNN
基于分块2DPCA 与2DLDA的单训练样本人脸识别
单训练样本
人脸识别
二维主成分分析(2DPCA)
二维线性判别分析(2DLDA)
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 2DPCA-ICA算法在人脸识别中的应用
来源期刊 电路与系统学报 学科 工学
关键词 二维主元分析 独立元分析 人脸识别 2DPCA-ICA
年,卷(期) 2008,(4) 所属期刊栏目 论文
研究方向 页码范围 24-28
页数 5页 分类号 TP391.41
字数 3611字 语种 中文
DOI 10.3969/j.issn.1007-0249.2008.04.005
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 甘俊英 五邑大学信息学院 82 871 14.0 26.0
5 李春芝 五邑大学信息学院 7 86 5.0 7.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (10)
共引文献  (43)
参考文献  (7)
节点文献
引证文献  (9)
同被引文献  (4)
二级引证文献  (4)
1982(1)
  • 参考文献(0)
  • 二级参考文献(1)
1991(1)
  • 参考文献(0)
  • 二级参考文献(1)
1994(2)
  • 参考文献(0)
  • 二级参考文献(2)
1995(1)
  • 参考文献(0)
  • 二级参考文献(1)
1998(1)
  • 参考文献(0)
  • 二级参考文献(1)
2000(2)
  • 参考文献(1)
  • 二级参考文献(1)
2001(1)
  • 参考文献(0)
  • 二级参考文献(1)
2002(3)
  • 参考文献(2)
  • 二级参考文献(1)
2003(2)
  • 参考文献(1)
  • 二级参考文献(1)
2004(3)
  • 参考文献(3)
  • 二级参考文献(0)
2008(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2009(2)
  • 引证文献(2)
  • 二级引证文献(0)
2010(2)
  • 引证文献(2)
  • 二级引证文献(0)
2013(1)
  • 引证文献(1)
  • 二级引证文献(0)
2014(2)
  • 引证文献(2)
  • 二级引证文献(0)
2015(2)
  • 引证文献(1)
  • 二级引证文献(1)
2017(2)
  • 引证文献(1)
  • 二级引证文献(1)
2019(1)
  • 引证文献(0)
  • 二级引证文献(1)
2020(1)
  • 引证文献(0)
  • 二级引证文献(1)
研究主题发展历程
节点文献
二维主元分析
独立元分析
人脸识别
2DPCA-ICA
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
电路与系统学报
双月刊
1007-0249
44-1392/TN
16开
广东省广州市
1996
chi
出版文献量(篇)
2090
总下载数(次)
5
总被引数(次)
21491
相关基金
广东省自然科学基金
英文译名:Guangdong Natural Science Foundation
官方网址:http://gdsf.gdstc.gov.cn/
项目类型:研究团队
学科类型:
论文1v1指导